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A. Differentiation for the orthogonality loss
Here we describe the differentiation for the orthogonality loss (Eq.(5)) which is utilised to fine-tune the selected expert


auto-encoder. The orthogonality loss is represented as:
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where Θ(u,v) = (u · v)2/(‖u‖22‖v‖22) and wjik defines a vectorised correlation filter estimated by Eq.(3) in the paper using


the vectorised k-th channel of the compressed feature fi
(
· · ·
(
f1(X
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j )
))


from the selected expert auto-encoder. The raw


convolutional features {X(1)
j }7j=1 are extracted from the samples which are augmented for the specific tracking target. Then,


the overall loss function contains two terms: 1) the Euclidean distance term measuring the distance between the raw deep
feature input and the final output of the auto-encoder and 2) the orthogonality term.


The Euclidean distance term is a conventional loss function which can be differentiated straightforward. However, we need
to introduce a new way of differentiating the the orthogonality term (


∑ci+1


k,l=1 Θ(wjik,wjil)) for fine-tuning the auto-encoder
using stochastic gradient descent. Since the orthogonality term only depends on the compressed feature, the gradients obtained
from this term only affect the encoding layers. Then, the gradients differentiated from the orthogonality term are added to the
gradients passed through the decoding layers by back-propagation.


The gradients for the orthogonality term can be estimated as following. For the compressed feature of the j-th sample from
the i-th partial auto-encoder of the expert auto-encoder, we can differentiate the orthogonality term by the k-th channel of the
compressed feature as:
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where zkji is the vector which is obtained by vectorising the k-th channel map of the feature compressed by the i-th partial
auto-encoder of the selected expert auto-encoder for the j-th training sample. Then, using the chain rule,
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can be estimated since only wjik depends on zkji while wjil is independent for zkji when k 6= l. Even for k = l, the equation
from the chain rule can be represented in the same manner.







When we estimate the two gradients individually, the first gradient can be obtained as:
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Before estimating the second gradient, we first define a circulant shift with a permutation matrix and a circulant matrix.
The circulant-shift is defined by the linear transformation via the permutation matrix P which is defined by:


P =





0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...


...
...


. . .
...
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. (15)


Then, for vector x = [x1, x2, ..., xN ]T , the k-times circulant-shifted vector becomes


Pkx =
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. (16)


Then, the circulant matrix C(x) is defined by a matrix composed of all possible circulant-shifted vectors of x as:
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To estimate the second gradient, we first obtain the gradient differentiated by the n-th element of zkji ∈ RN×1, which is


defined by zk(n)
ji for n ∈ {1, ..., N}, as
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The relation between wjik and zkji is represented by the ridge regression according to [6] as


wjik =
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)−1
CH(zkji)y, (19)


where C(zkji) represents the circulant matrix obtained from zkji, C
H(zkji) is the conjugated-transpose of C(zkji), I is the


identity matrix, and λ and y are the predefined regularisation factor and the vectorised target response map as mentioned in
Eq.(3). Thus, by utilising the differentiation of the inverse matrix [9], we obtain
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To simplify the equation, we use the property of the circulant matrix which can be diagonalised as:


C(x) = Fdiag(x̂)FH , (21)


where diag(x̂) is a diagonal matrix with x̂ as diagonal elements and F is a linear transform matrix for the Fourier transforma-
tion [4]. F consists of several properties as: √
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From these two estimated terms, we can simplify Eq.(20) as:
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(ẑkji
∗
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Then, by applying a complex conjugate to both the left-side and right-side of Eq.(24), the equation can be represented as:
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ẑkji
∗
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Then, we can integrate the element-wise gradients to obtain the gradient of Eq.(18) as:
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When we apply the property of Eq.(27) to Eq.(26), we obtain
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Then, we can estimate Eq.(13) by integrating Eq.(14) and Eq.(28) as:
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ẑkji
∗)}


F


= ĥijk
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When we insert the definition of D1 and D2 from Eq.(25), the equation becomes
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where real (x̂) gives a vector containing only the real-valued part of the complex vector x̂.


B. Parameter Analysis
Target layer of VGG-Net: Using the CVPR2013 [11] dataset, we conduct additional experiments to compare the tracking


performance when different convolutional layers of VGG-M [1] are used. There are three convolutional layers in VGG-M:
conv1 (109× 109× 96), conv2 (26× 26× 256), and conv3 (13× 13× 512). For conv1 and conv3, the AUC of the success
plots were 0.387 and 0.437, respectively. This compared to an AUC of 0.652 for conv2, and thus the tracking performance was
reduced significantly if conv1 or conv3 are used. Wang et al. [10] analysed the response of different layers of deep networks
for visual tracking, which concluded that the deeper layer contains higher-level information of the target. Similarly, conv1
can be assumed to work as a filter bank rarely considering contextual information, so it is prone to overfitting of the initial
appearance of the target in the initial adaptation process. On contrary, conv3 can highly depend on the high-level information,
which leads to a weakness when discriminating background clutter. Therefore, we conclude that the conv2 layer is best suited
for our context-aware network as it contains mid-level features which are less prone to overfitting while being able to operate
in the presence of background clutter.


Number of Contextual Clusters: As shown in Fig. 1, we also conducted additional experiments with the CVPR2013 [11]
dataset by changing the number of contextual clusters: Nc = 1, 5, 10, 15, 25. When the number of contextual cluster was less
than the optimal value 10, the tracking performance reduced as the contextual variety of the training images is ignored. On
contrary, when the number of contextual cluster was larger than 10, the tracking performance decreased as there is a lack of
training samples to pre-train the expert auto-encoders. Thus, for the unsupervised multiple-context scheme, it is important to
find the number of contextual clusters which is the best fit for the used training dataset.


Figure 1. Parameter Analysis. The tracking performance was compared with different numbers of the contextual clusters.


C. Analysis for Contextual Clusters
We made an interesting observation from the results of the context-aware network fed by various detection and tracking


datasets: VOC2012 [2], Caltech101 [3], Caltech256 [5], VOT2016 [7], UAV123 [8], CVPR2013 tracking dataset [11], and
TPAMI2015 [12]. To represent the contextual correlation of these datasets, we constructed histograms for the cluster selection
results of the datasets, and then estimated the correlation matrix as shown in Fig. 2. Since the Caltech256 and TPAMI2015
datasets respectively contain the Caltech102 and CVPR2013 datasets, their contextual correlation values were high as confirmed
in the correlation matrix. Even though VOT2016, UAV123, and TPAMI2015 have few overlapping videos, their correlation
values were also very high, which is contrary to the two detection datasets (VOC2012 and Caltech) with low correlation. This
is due to the relatively limited types of targets included in the tracking datasets. Therefore, we suggest that neural network
based trackers should not only be trained by tracking datasets but also by additional datasets to cover more general objects.
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Figure 2. Dataset correlation matrix. The correlation matrix among various computer vision datasets is shown, which was obtained by
estimating the correlation among the histograms of the results from the context-aware network.


D. Additional Self-comparison Experiment
We performed additional experiments for analysing the extrinsic denoising criteria as shown in Fig. 3. We tested two


additional variants, no ex.-TRACA and no co.-TRACA where we respectively set the noise ratio of the exchange process or the
corrupting process to zero, while the noise ratio of the remaining process was set to 0.2 to preserve the overall noise ratio.
These variants perform much worse than TRACA (10.9% and 12.0% decrease of average precision), which highlights the
contribution of the proposed extrinsic denoising criteria.


TRACA [0.898]
no ex.-TRACA [0.789]
dropout-TRACA [0.785]
no co.-TRACA [0.778]
clean-TRACA [0.754]


TRACA [0.652]
no ex.-TRACA [0.592]
dropout-TRACA [0.585]
no co.-TRACA [0.578]
clean-TRACA [0.563]


Figure 3. Additional Self-comparison Results in CVPR2013 Dataset


E. Computational Time for Pre-training Phase
The pre-training time is as follows (all numbers in minutes): 13.1 for the base auto-encoder, 41.8 for the clustering, 41.4 for


the expert auto-encoders, and 19.2 for the context-aware network (115.6 in total).
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