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Proof of Theorem 4.2

Theorem 4.2. Let R}, i = 1,...,n denote a stationary
point to the primal problem (P) for a cycle graph with n
vertices. Let ayj denote the angular residuals, i.e., o;; =
Z(RfRij, R}). Then, R}, i = 1,....n will be globally
optimal and strong duality will hold for (P) if

|aij| < % (i, j) € E.

Proof. A sufficient condition for strong duality to hold is
that A* — R > 0 (Lemma 3.2), which is equivalent to
Dpg«(A* — R)Dg* >~ 0 with the same notation and ar-
gument as in (23) and (24). For a cycle graph, we get
Dpg-(A* — R)D%. =

E12+ Ein —&12 —Ein
—51T2 51T2 + &3 —&o3
—&L . (48)
_gIT;L

As this matrix is symmetric, it implies for the first diagonal
block that 15 — &, = &L, — E1,,. As all &;; € SO(3), it
follows that &5 = &, = &£ for some rotation £ € SO(3).
Similarly, for the second diagonal block 15 = 527;, = & and
by induction, the matrix D g« (A* — R)D}g* has the follow-
ing tridiagonal (Laplacian-like) structure

e+t =€ —&T
=& g4ET =€
e . (49
- ", —£
—& =& e+t

Note that this means that the total error is equally distributed
in an optimal solution among all the residuals, in particular,
a;; = aforall (4,7) € E, where « is the residual rotation
angle of £.

Let v denote the rotation axis of £ and let w and w be
an orthogonal base which is orthogonal to v. Then, define

the two vectors v4 = (vi1 Vio ... v, )T, where
ve; = cos(Z)u + sin(Z)w for i = 1,...,n. Now
it is straight-forward to check that vy are eigenvectors to
(49) with eigenvalues 4sin(Z + «) sin(Z ). The sign of the
smallest of these two eigenvalues determines the positive
definiteness of the matrix in (49). In other words, we have

shown that if || < T then Dg-(A* — R)D%, = 0. O

n

Proof of Lemma 5.1
Lemma 5.1. Let B be a positive semidefinite matrix. Then,
the solution to (46) is given by,
1 T
S* = —BW {(WTBW) ] . (50)

Proof. From the Schur complement, we have that the 2 x 2
block matrix in (46) is positive semidefinite if and only if

I-STBS =0, (51)

(I - BBNH)S =0. (52)

Hence the problem (46) is equivalent to

min <W,S > (53a)
S€R3n><3

st. I—-STBTS =0, (53b)

(I —-BB"H)S =0. (53¢)

The KKT conditions for (53), with Lagrangian multipliers
T'and T, become

W +2B'ST + (I - BBHY =0, (54)
I-STBTS =0, (55)

(I - BBH)S =0, (56)

=0, (57)

(I -STB'S)r =o. (58)

Rewrite (54) and (58) as

1
2
'’ =17sTBIST. (60)

BIST = —%W — —(I-BBHT, (59)



Since the pseudoinverse fulfills B BBt = BT, combining
(59) and (60) we obtain

2 =r17sT"B'BBST = (61)

- % (W + (I - BBYY)" B(W + (I - BBN)Y) =
(62)

= iWTBW. (63)

Here the last equality follows since B(I — BB') = 0. This
gives

SIS

_ 1 T
r— 5(W BW) . (64)
Inserting (64) in (59)
B*S(WTBW) ‘= _w - -BBHYY, (65
(66)

multiplying with B form the left on both sides and using
(56), BBtS = S, we arrive at

S(WTBW)% — _BW, (67)

and consequently

[SE

S = —BW [(WTBW) ]T. (68)

Finally, since

r— %(WTBW)% = 0, (69)

I-S8TBiS =
- {(WTBW)%TWTBW {(WTBW)éy -0,
(70)

the conditions (55) and (57) are satisfied then (50) must be a
feasible and optimal solution to (53) and consequently also
to (46). O



