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Proof of Theorem 4.2

Theorem 4.2. Let R∗i , i = 1, . . . , n denote a stationary
point to the primal problem (P ) for a cycle graph with n
vertices. Let αij denote the angular residuals, i.e., αij =

∠(R∗i R̃ij , R
∗
j ). Then, R∗i , i = 1, . . . , n will be globally

optimal and strong duality will hold for (P ) if

|αij | ≤
π

n
∀(i, j) ∈ E.

Proof. A sufficient condition for strong duality to hold is
that Λ∗ − R̃ � 0 (Lemma 3.2), which is equivalent to
DR∗(Λ∗ − R̃)DT

R∗ � 0 with the same notation and ar-
gument as in (23) and (24). For a cycle graph, we get
DR∗(Λ∗ − R̃)DT

R∗ =
E12 + E1n −E12 −E1n
−ET12 ET12 + E23 −E23

−ET23

. . . . . .

. . . . . .
−ET1n

 . (48)

As this matrix is symmetric, it implies for the first diagonal
block that E12 − ET12 = ET1n − E1n. As all Eij ∈ SO(3), it
follows that E12 = ET1n = E for some rotation E ∈ SO(3).
Similarly, for the second diagonal block E12 = ET23 = E and
by induction, the matrix DR∗(Λ∗ − R̃)DT

R∗ has the follow-
ing tridiagonal (Laplacian-like) structure

E+ET −E −ET
−ET E+ET −E

−ET
. . . . . .
. . . . . . −E

−E −ET E+ET

 . (49)

Note that this means that the total error is equally distributed
in an optimal solution among all the residuals, in particular,
αij = α for all (i, j) ∈ E, where α is the residual rotation
angle of E .

Let v denote the rotation axis of E and let u and w be
an orthogonal base which is orthogonal to v. Then, define

the two vectors v± = ( v±,1 v±,2 . . . v±,n )T , where
v±,i = cos( 2πi

n )u ± sin( 2πi
n )w for i = 1, . . . , n. Now

it is straight-forward to check that v± are eigenvectors to
(49) with eigenvalues 4 sin(πn ± α) sin(πn ). The sign of the
smallest of these two eigenvalues determines the positive
definiteness of the matrix in (49). In other words, we have
shown that if |α| ≤ π

n then DR∗(Λ∗ − R̃)DT
R∗ � 0.

Proof of Lemma 5.1

Lemma 5.1. Let B be a positive semidefinite matrix. Then,
the solution to (46) is given by,

S∗ = −BW
[(
WTBW

) 1
2

]†
. (50)

Proof. From the Schur complement, we have that the 2× 2
block matrix in (46) is positive semidefinite if and only if

I − STB†S � 0, (51)

(I −BB†)S = 0. (52)

Hence the problem (46) is equivalent to

min
S∈R3n×3

< W,S > (53a)

s.t. I − STB†S � 0, (53b)

(I −BB†)S = 0. (53c)

The KKT conditions for (53), with Lagrangian multipliers
Γ and Υ , become

W + 2B†SΓ + (I −BB†)Υ = 0, (54)

I − STB†S � 0, (55)

(I −BB†)S = 0, (56)
Γ � 0, (57)

(I − STB†S)Γ = 0. (58)

Rewrite (54) and (58) as

B†SΓ = −1

2
W − 1

2
(I −BB†)Υ, (59)

ΓTΓ = ΓTSTB†SΓ. (60)



Since the pseudoinverse fulfills B†BB† = B†, combining
(59) and (60) we obtain

Γ2 = ΓTSTB†BB†SΓ = (61)

=
1

4

(
W + (I −BB†)Υ

)T
B
(
W + (I −BB†)Υ

)
=

(62)

=
1

4
WTBW. (63)

Here the last equality follows since B(I −BB†) = 0. This
gives

Γ =
1

2

(
WTBW

) 1
2

. (64)

Inserting (64) in (59)

B†S
(
WTBW

) 1
2

= −W − (I −BB†)Υ, (65)

(66)

multiplying with B form the left on both sides and using
(56), BB†S = S, we arrive at

S
(
WTBW

) 1
2

= −BW, (67)

and consequently

S = −BW
[(
WTBW

) 1
2

]†
. (68)

Finally, since

Γ =
1

2

(
WTBW

) 1
2 � 0, (69)

I − STB†S =

= I −
[(
WTBW

) 1
2

]†
WTBW

[(
WTBW

) 1
2

]†
� 0,

(70)

the conditions (55) and (57) are satisfied then (50) must be a
feasible and optimal solution to (53) and consequently also
to (46).


