

Rotation Averaging and Strong Duality - Supplementary Material

Anders Eriksson¹, Carl Olsson^{2,3}, Fredrik Kahl^{2,3} and Tat-Jun Chin⁴

¹School of Electrical Engineering and Computer Science, Queensland University of Technology

²Department of Electrical Engineering, Chalmers University of Technology

³Centre for Mathematical Sciences, Lund University

⁴School of Computer Science, The University of Adelaide

Proof of Theorem 4.2

Theorem 4.2. Let R_i^* , $i = 1, \dots, n$ denote a stationary point to the primal problem (P) for a cycle graph with n vertices. Let α_{ij} denote the angular residuals, i.e., $\alpha_{ij} = \angle(R_i^* \tilde{R}_{ij}, R_j^*)$. Then, R_i^* , $i = 1, \dots, n$ will be globally optimal and strong duality will hold for (P) if

$$|\alpha_{ij}| \leq \frac{\pi}{n} \quad \forall (i, j) \in E.$$

Proof. A sufficient condition for strong duality to hold is that $\Lambda^* - \tilde{R} \succeq 0$ (Lemma 3.2), which is equivalent to $D_{R^*}(\Lambda^* - \tilde{R})D_{R^*}^T \succeq 0$ with the same notation and argument as in (23) and (24). For a cycle graph, we get $D_{R^*}(\Lambda^* - \tilde{R})D_{R^*}^T =$

$$\begin{bmatrix} \mathcal{E}_{12} + \mathcal{E}_{1n} & -\mathcal{E}_{12} & & -\mathcal{E}_{1n} \\ -\mathcal{E}_{12}^T & \mathcal{E}_{12}^T + \mathcal{E}_{23} & -\mathcal{E}_{23} & \\ & -\mathcal{E}_{23}^T & \ddots & \ddots \\ & & \ddots & \ddots \\ -\mathcal{E}_{1n}^T & & & \end{bmatrix}. \quad (48)$$

As this matrix is symmetric, it implies for the first diagonal block that $\mathcal{E}_{12} - \mathcal{E}_{12}^T = \mathcal{E}_{1n}^T - \mathcal{E}_{1n}$. As all $\mathcal{E}_{ij} \in \text{SO}(3)$, it follows that $\mathcal{E}_{12} = \mathcal{E}_{1n}^T = \mathcal{E}$ for some rotation $\mathcal{E} \in \text{SO}(3)$. Similarly, for the second diagonal block $\mathcal{E}_{12} = \mathcal{E}_{23}^T = \mathcal{E}$ and by induction, the matrix $D_{R^*}(\Lambda^* - \tilde{R})D_{R^*}^T$ has the following tridiagonal (Laplacian-like) structure

$$\begin{bmatrix} \mathcal{E} + \mathcal{E}^T & -\mathcal{E} & & -\mathcal{E}^T \\ -\mathcal{E}^T & \mathcal{E} + \mathcal{E}^T & -\mathcal{E} & \\ & -\mathcal{E}^T & \ddots & \ddots \\ & & \ddots & \ddots & -\mathcal{E} \\ -\mathcal{E} & & -\mathcal{E}^T & \mathcal{E} + \mathcal{E}^T & \end{bmatrix}. \quad (49)$$

Note that this means that the total error is equally distributed in an optimal solution among all the residuals, in particular, $\alpha_{ij} = \alpha$ for all $(i, j) \in E$, where α is the residual rotation angle of \mathcal{E} .

Let v denote the rotation axis of \mathcal{E} and let u and w be an orthogonal base which is orthogonal to v . Then, define

the two vectors $v_{\pm} = (v_{\pm,1} \ v_{\pm,2} \ \dots \ v_{\pm,n})^T$, where $v_{\pm,i} = \cos(\frac{2\pi i}{n})u \pm \sin(\frac{2\pi i}{n})w$ for $i = 1, \dots, n$. Now it is straight-forward to check that v_{\pm} are eigenvectors to (49) with eigenvalues $4\sin(\frac{\pi}{n} \pm \alpha)\sin(\frac{\pi}{n})$. The sign of the smallest of these two eigenvalues determines the positive definiteness of the matrix in (49). In other words, we have shown that if $|\alpha| \leq \frac{\pi}{n}$ then $D_{R^*}(\Lambda^* - \tilde{R})D_{R^*}^T \succeq 0$. \square

Proof of Lemma 5.1

Lemma 5.1. Let B be a positive semidefinite matrix. Then, the solution to (46) is given by,

$$S^* = -BW \left[\left(W^T BW \right)^{\frac{1}{2}} \right]^{\dagger}. \quad (50)$$

Proof. From the Schur complement, we have that the 2×2 block matrix in (46) is positive semidefinite if and only if

$$I - S^T B^{\dagger} S \succeq 0, \quad (51)$$

$$(I - BB^{\dagger})S = 0. \quad (52)$$

Hence the problem (46) is equivalent to

$$\min_{S \in \mathbb{R}^{3n \times 3}} \langle W, S \rangle \quad (53a)$$

$$\text{s.t.} \quad I - S^T B^{\dagger} S \succeq 0, \quad (53b)$$

$$(I - BB^{\dagger})S = 0. \quad (53c)$$

The KKT conditions for (53), with Lagrangian multipliers Γ and Υ , become

$$W + 2B^{\dagger} S \Gamma + (I - BB^{\dagger})\Upsilon = 0, \quad (54)$$

$$I - S^T B^{\dagger} S \succeq 0, \quad (55)$$

$$(I - BB^{\dagger})S = 0, \quad (56)$$

$$\Gamma \succeq 0, \quad (57)$$

$$(I - S^T B^{\dagger} S)\Gamma = 0. \quad (58)$$

Rewrite (54) and (58) as

$$B^{\dagger} S \Gamma = -\frac{1}{2}W - \frac{1}{2}(I - BB^{\dagger})\Upsilon, \quad (59)$$

$$\Gamma^T \Gamma = \Gamma^T S^T B^{\dagger} S \Gamma. \quad (60)$$

Since the pseudoinverse fulfills $B^\dagger BB^\dagger = B^\dagger$, combining (59) and (60) we obtain

$$\Gamma^2 = \Gamma^T S^T B^\dagger BB^\dagger S \Gamma = \quad (61)$$

$$= \frac{1}{4} (W + (I - BB^\dagger) \Upsilon)^T B (W + (I - BB^\dagger) \Upsilon) = \quad (62)$$

$$= \frac{1}{4} W^T B W. \quad (63)$$

Here the last equality follows since $B(I - BB^\dagger) = 0$. This gives

$$\Gamma = \frac{1}{2} (W^T B W)^{\frac{1}{2}}. \quad (64)$$

Inserting (64) in (59)

$$B^\dagger S (W^T B W)^{\frac{1}{2}} = -W - (I - BB^\dagger) \Upsilon, \quad (65)$$

$$(66)$$

multiplying with B from the left on both sides and using (56), $BB^\dagger S = S$, we arrive at

$$S (W^T B W)^{\frac{1}{2}} = -BW, \quad (67)$$

and consequently

$$S = -BW \left[(W^T B W)^{\frac{1}{2}} \right]^\dagger. \quad (68)$$

Finally, since

$$\Gamma = \frac{1}{2} (W^T B W)^{\frac{1}{2}} \succeq 0, \quad (69)$$

$$\begin{aligned} I - S^T B^\dagger S &= I - \left[(W^T B W)^{\frac{1}{2}} \right]^\dagger W^T B W \left[(W^T B W)^{\frac{1}{2}} \right]^\dagger \succeq 0, \end{aligned} \quad (70)$$

the conditions (55) and (57) are satisfied then (50) must be a feasible and optimal solution to (53) and consequently also to (46). \square