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1. Network Details

In this section, we provide the architectural details of the
proposed model. We plot the network architecture in Fig-
ure 1. Input to the network is a sequence of 8 consecu-
tive RGB frames. The architecture is based upon the BN-
Inception model [1]. The first spatial convolutional layer
of the BN-Inception is used as the shared lower-level fea-
ture extractor for all three branches. We set the stride to
1 to have a displacement map with the same size with the
original input.

1.1. Static Appearance Branch

The static appearance branch mostly follows the BN-
Inception, except that (1) the pool_2 layer with spatial
Max-pooling is replaced with a 3D version with kernel size
3× 3× 2 and stride 2× 2× 2; (2) An extra temporal Max
pooling layer with kernel 1×1×2 and stride 1×1×2 is in-
serted after inception_3a and inception_4e. This
results in a gradual decrease of temporal resolution from 8,
4, 2, to 1.

1.2. Apparent Motion Branch

The apparent motion branch receives the low-level fea-
ture maps and calculates a 4-D cost-volume of size 224 ×
224 × 11 × 11 for each neighboring image pair. The cost
volume is then transformed into a displacement map. 7 dis-
placement maps calculated from 8 consecutive frames are
stacked into a 14-channel motion representation, which is
processed by a subnet similar to BN-Inception [1].

1.3. Appearance Change Branch

The appearance change branch starts with a warping
module, which takes in a feature map and reference dis-
placement map calculated from the apparent motion branch.
Then we calculate the warped difference by subtracting the
feature map at time t from the feature map at time t − 1
warped with the displacement map at time t−1. The warped

differences from consecutive frames are stacked as well and
processed by a subnet similar to BN-Inception [1].

2. Visualization

In this section, we present a qualitative study by visualiz-
ing the intermediate results. As shown in Figure 2, the dis-
placement map can preserve the apparent motion informa-
tion in most cases. However, the displacement map contains
much more noise than the optical flow calculated by TV-
L1 [2]. This is because in TV-L1[2] the optimization objec-
tive includes a regularization term which favors smoothness
and penalizes abrupt motion. In the cost-volume formula-
tion, however, we do not enforce any smoothness constraint.
The deep subnet that follows is expected to filter out the
distraction of noise and focus on the real motion. In exper-
iments, we did observe that there is just a slight decrease
of performance in these cases. It is important to note that
the displacement map fails in those regions that either have
a large area of similar background color or have wavy tex-
ture which evolves with time. In the former case, the small
receptive field of the convolutional layer, on which the cost
volume is built upon, makes it difficult to track large dis-
placement. In the latter case, the wavy texture, for example,
grass, water, or snow makes pixel-level matching between
frames impossible without introducing smoothness assump-
tion.

We also compare the method between the naive RGB dif-
ference and the motion-warped RGB difference. Compared
with RGB difference, motion-warped RGB difference fo-
cuses more on the change of appearance, reflected by the
more distinctive edges of moving objects. We can also ob-
serve that RGB difference warped by the displacement map
is visually similar to the RGB difference warped by TV-L1.
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Figure 1. The illustration of the network structure.
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Figure 2. Visualization of the displacement map and warped RGB-difference. For each image pair (upper-left), the TV-L1 optical flow
(upper-middle), the cost-volume-based displacement map (upper-right) is compared. In the lower part, RGB-difference without warping
(lower-left), warped by TV-L1 flow (lower-middle) and displacement map (lower-right) are compared.


