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1. Introduction
In this supplementary material, we provide more discus-

sions on the phenomenon of scale diversity. We also derive
the backward computation of the proposed graph Laplacian
regularization loss. We then showcase more visual compar-
isons of the proposed method, zoom and learn (ZOLE), for
self-adaptation.

2. More Discussions on Scale Diversity
In addition to stereo matching, scale diversity can also be

observed in other pixel-wise regression/classification prob-
lems employing convolutional neural networks (CNNs),
e.g., optical flow estimation [2, 5] and semantic segmen-
tation [6].

Optical flow estimation is a problem closely related to
stereo matching, where given two frames at different time
instants, a per-pixel optical flow field is estimated. Similar
to the setup of stereo matching, we adopt the representative
FlowNet [2] architectures—both the one with explicit 2D
correlation (FlowNetC) and the one with only convolution
(FlowNetS)—to see the scale diversity in optical flow esti-
mation. Particularly, the released FlowNetC and FlowNetS
models, trained with the synthetic Flying Chairs dataset [2],
are adopted. Besides, we employ the training split of the
Middlebury optical flow dataset [1] for investigation. All of
its images are first resized to an original size of 576×448.
To estimate the optical flow of an image pair at a finer scale,
we first up-sample (zoom in) the image pair by r times
(r > 1). The up-sampled image pair is then fed to the CNN,
leading to a flow at a higher resolution. By down-sampling
the flow field by r times and also re-scale its values by a
factor of 1/r, one obtains an optical flow estimate at a finer
scale r.

Figure 1 shows several optical flow fields obtained by
feeding image pairs at different resolutions, i.e., 576r ×
448r, r ∈ {1, 3, 5}, to the released FlowNetC model. Simi-
lar to the observations about stereo matching, we see that as
r increases, more and more high-frequency details emerge
on the output optical flow fields. However, a bigger r, i.e.,

Figure 1. For the same image pair, feeding its zoomed-in version
to an optical flow estimation CNN leads to results with extra de-
tails. The five rows are the first image, the ground-truth, and the
resulting flows obtained with up-sampling ratios r = 1, 3, 5, re-
spectively.

a finer scale, does not necessarily translate to a better per-
formance. To see this, we measure the average endpoint
error (EPE) between the output flows (estimated at different
scales) and the ground-truth flows on the Middlebury op-
tical flow dataset. The obtained objective performance are
listed in Table 1. Similar to our observations about stereo
matching, we see that as the resolution grows, the network
performance first improves (by virtue of a finer-grain esti-
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Table 1. The endpoint errors of the released FlowNetC and
FlowNetS models on the training set of the Middlebury optical
flow data. A resolution of r means the stereo pairs are up-sampled
to 576r × 448r before passing to the CNNs.

Network
Resolution

1 2 3 4 5 6
FlowNetC 1.30 0.86 0.71 0.69 0.79 0.87
FlowNetS 1.27 0.81 0.69 0.64 0.72 0.82

mation process) then deteriorates (due to the shrinking re-
ceptive field).

Different from stereo matching and optical flow estima-
tion, semantic segmentation takes as input an image then
performs pixel-wise classification. We find that the phe-
nomenon of scale diversity also exists in semantic segmen-
tation. For illustration, we adopt the notable fully convo-
lutional neural network (FCN) architecture, FCN-8s [6],
and perform the following tests. Particularly, we use the
released FCN-8s model pre-trained on the PASCAL VOC
dataset (with the 8498 training examples used by the work
[4]). It is tested on the validation split (736 images) pro-
vided by the authors of [6]. To obtain the segmentation of
an image at a finer scale, one simply up-samples the original
image by a ratio of r and pass it to the network. The result-
ing segmentation is then down-sampled by a factor of r with
nearest neighbor down-sampling, so that it has the same size
as the original image. Figure 2 shows a few segmentations
estimated with different scales, i.e., r ∈ {1, 1.5, 2, 2.5}. We
see that as r grows, more thin details are produced. How-
ever, for an r that is too large, i.e., the network becomes too
localized, wrong classifications start to emerge.

Hence, it is possible to exploit scale diversity to improve
the performance of CNNs for optical flow estimation and
semantic segmentation. We leave this topic for future re-
search.

3. Backpropagation of the Graph Laplacian
Regularization Loss

We hereby derive the backward pass of our proposed
graph Laplacian regularization loss. Given a disparity map
Si ≡ S(Pi;Θ) generated by a deep stereo model S(·;Θ),
its graph Laplacian regularization loss is given by

LG(Si) = λ ·
M∑
j=1

sTijL
(k)
ij sij .

Be reminded that λ is a constant, M is the number of
patches tiling the whole disparity map, sij = Rj ·
vec (Si) ∈ Rm (i.e., the j-th patch of Si), L

(k)
ij is the pre-

computed graph Laplacian matrix for regularizing sij at the
k-th iteration.

Figure 2. Feeding the up-sampled versions of an image to the pre-
trained FCN-8s model leads to segmentation results with more fine
details. However, the results deteriorate if the up-sampling ratio r
is too large. The six rows are the original image, the ground-truth
segmentation, and the segmentations obtained by up-sampling ra-
tios r = 1, 1.5, 2, 2.5, respectively.

We denote the n-th pixel on a particular patch sij as p(n)ij ,

then the partial derivative of LG with respect to p(n)ij can be
derived as follows,

∂LG

∂p
(n)
ij

= λ

(
∂sTijL

(k)
ij sij

∂sij

)T

· ∂sij

∂p
(n)
ij

= 2λsTijL
(k)
ij 1n,

where 1n ∈ Rm is an indication vector, its n-th entry equals
one and the rest entries are zeros.

4. More Visual Results
In this section, we present more visual results of our pro-

posed zoom and learn (ZOLE) approach. We employ the
same settings as described in the paper, i.e., we generalize
the pre-trained DispNetC model to two different domains:
daily scenes collected by smartphones and street views cap-
tured from the perspective of a driving car. Visual compar-
isons on the test split of our smartphone dataset are shown
in Figure 3. As can be seen, our obtained disparity maps
change smoothly for regions within the same object, while



Left image Tonioni et al. [8] DispNetC ZOLE-S ZOLE

Figure 3. Visual comparisons of different models on the test set of our collected smartphone data. This figure shows the left images and the
corresponding disparity maps obtained with four different models. We see that the proposed ZOLE approach produces smooth disparity
maps with sharp edges at object boundaries.

they have sharp edges at object boundaries. Our method
is also capable of producing fine details that are far away
from the cameras, i.e., with small disparity values. Figure 4

shows the visual results on the training split (with sparse
ground-truths) of the KITTI stereo 2015 dataset [3]. We
see that compared to the other CNN models, the one ob-



Left image Ground-truth (sparse) Tonioni et al. [8] DispNetC ZOLE

Figure 4. Visual comparisons of different models on the KITTI stereo 2015 dataset. The five columns of this figure shows the fragments
of the left images, sparse ground-truth disparity maps, the disparity maps produced by [8], the released DispNetC model pre-trained with
FlyingThings3D [7], and the proposed ZOLE approach, respectively. We see that our method provides high-fidelity disparity maps.

tained by our ZOLE approach provides high-fidelity dispar-
ity maps.
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