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This supplemental material provides a brief introduction
to vectors and tensors on Riemannian manifolds (Sec. 1);
compares the ranking algorithms addressed in the main paper
from the manifold regularization perspective to highlight
challenges on high-order tensor regularization (Sec. 2);
demonstrates the approximation capability of our low-rank
ranking matrix representation (Sec. 3); presents details of
reconstructing linear rankings from the estimated ranking
matrices (Sec. 4); and presents additional experimental results
(Sec. 5). Some contents from the main paper are reproduced
so that this document is self-contained.

1. Vectors & tensors on Riemannian manifolds
A d-dimensional (real topological) manifold M is a space

that looks locally Euclidean. That is, at each point p, there is
an open neighborhood U containing p, and a continuous map
x with a continuous inverse to an open subset Ũ of Euclidean
space Rd.1

The pair (U,x) is called a coordinate chart. A coordinate
chart provides representations of points on U ⊂M to facilitate
numerical operations. In general, multiple coordinate charts
include a single point in their domains, with each providing its
own coordinate representation:

x(p) ∼ (x1(p), . . . xd(p)),

y(p) ∼ (y1(p), . . . yd(p)). (1)

An atlas {(Uα, xα)} is a family of charts where {Uα}
constitute an open covering ofM . By selecting two coordinate
charts (Uα, xα) and (Uβ, xβ) from an atlas and combining the
corresponding chart maps xα and xβ, one can define a chart
transition as a map on Rd:

xβ ◦ x−1α : xα(Uα ∩Uβ)→ xβ(Uα ∩Uβ). (2)

An atlas is smooth (or infinitely differentiable) if all compatible
(Uα ∩Uβ 6= 0) chart transitions are infinitely differentiable (or
of classC∞). A topological manifoldM is smooth if the union
of all possible atlas onM is smooth.

1In addition to the local Euclidean structure, a topological M further
satisfies the conditions of being Hausdorff and second countable, which are
automatically met when M is presented as a submanifold of a Euclidean space.

At each point p in a d-dimensional differentiable manifold
M , the tangent space Tp(M) is a d-dimensional vector space
defined as the set of equivalence classes of curves passing
through p on M: Two curves are equivalent when they are
tangent at p. This equivalence class is represented by a vector
Y ∈ TpM tangent to these curves. Given such a (geometric)
vector Y , one could uniquely define a partial derivative operator
that takes the derivative of an input function along the direction
of Y . This establishes a connection between a vector and a
directional derivative operator.

From now on, we will assume that all discussed functions are
smooth, i.e., f ∈ C∞(M). We will denote the union of TpM
over p ∈M as TM , which is called the vector bundle, and the
dual of TpM over p ∈M as T∗M , which is called the covector
bundle. The term vector is used to denote an element of a
tangent space TpM , as well as an element in a vector bundle
TM . In the latter case, it is also called a vector field. We will
adopt this convention for tensors as well. We refer the reader to
textbooks on this topic for a more systematic introduction [6, 7].

Given a coordinate representation (x1, . . . , xd) around
a point p ∈ M , we can represent a vector Y ∈ TM as a
first-order tensor:

(y1, . . . , yd)↔ Y =
∑

i=1,...,d

yi∂i, (3)

where the partial derivative operators {∂i := ∂
∂xi}

d
i=1 constitute

a basis of TM at the vicinity of p. Similarly, a dual vector (or
covector) ω ∈ T∗M is represented as:

(ω1, . . . , ωd)↔ ω =
∑

i=1,...,d

ωidx
i, (4)

with the dual basis:

{dxi : dxi(∂j) = δij}di=1. (5)

Using the duality (Eq. 5), we can identify a vector Y ∈ TM
with a linear function on T∗M :

Y ↔ Y (·) =
∑

i=1,...,d

yi∂i(·). (6)
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Similarly, a covector ω ≡ ω(·) can be regarded as a
linear function on TM . Furthermore, as shown shortly, on
a Riemannian manifold (M,g), we can establish a direct
correspondence between a vector and a covector (a linear
function on TM) using the metric g:

Y ∈ TM ↔ g(Y, ·) ∈ T∗M, (7)

as g(Y, ·) is a linear function on TM .
Now, we can build higher-order tensors upon the vector and

covector bundle structure. For instance, the Riemannian metric
g, as a second order tensor, is an element of T∗M ×T∗M , and
it is represented in coordinates (x) as:2

g =
∑

ij=1,...,d

gijdx
i ⊗ dxj, (8)

where⊗ is the tensor product.
The Riemannian metric introduces an inner-product on TM

and T∗M and it enables measuring the length ‖Y ‖g of a vector
Y =

∑
i y
i∂j ∈ TpM :

‖Y ‖2g := 〈Y,Y 〉 = g(Y,Y )

=
∑

ij=1,...,d

gijdx
i(Y )⊗ dxj(Y )

=
∑

ij=1,...,d

gijy
iyj. (9)

This inner-product structure can be extended to higher-order
tensors, e.g., an inner-product of two second-order tensors
h =

∑
ij h

ij∂i ⊗ ∂i and q =
∑
ij q

ij∂i ⊗ ∂i is defined as [7]:

〈h, g〉g =

d∑
ijkl=1

gijgklh
ikqjl. (10)

This construction allows us to define the symmetric
metric integral (Eqs. 6-7 of the main paper) and the induced
anti-symmetric tensor integral (Eq. 9 of the main paper). Based
on them, we introduce our high-order tensor extension of the
harmonic regularization energy (Eq. 11 of the main paper).

2. Comparison of RankSVM, semi-supervised
RankSVM, and transductive ranking.

Having constructed the notion of Riemannian manifolds,
and vectors and tensors that lie on the bundle structure of a
manifold, we are now ready to discuss traditional regularization
techniques applied to (zeroth-order) functions, and why it is
not straightforward to extend these techniques to tensors.

2Equivalently, g is a bilinear function on TM × TM . Further, there are
three other types of second order tensors as defined as elements of TM ×TM ,
T∗M × TM , and TM × T∗M , respectively. On Riemannian manifolds,
they are all equivalent due to the duality induced by the metric g, Eq. 7.

Suppose that we are given a set of data points
X = {x(1), . . . ,x(n)} ⊂ Rm, along with pairwise in-
equality and equality relationships, respectively, P = {(i, j)}
and O = {(i, j)}, where (i, j) ∈ P implies that the rank of
i-th data point is higher than j-th data point (as denoted as
Rank(x(i)) > Rank(x(j))). Similarity, (i, j) ∈ O means
Rank(x(i)) = Rank(x(j)).

RankSVM (RS). In the original Relative Attributes work [9],
the desired ordering is obtained by applying an ordering
function f : Rm → R to X :

f(x) = w>x, (11)

where the parameter vector w is estimated as the minimizer
of the RankSVM (RS) energy functional [2, 9]:

ERS(w) =
∑

(i,j)∈P

lP (fi − fj) +
∑

(i,j)∈O

lO(fi − fj) + λ‖w‖2,

(12)

where λ is a hyper-parameter. The inequality loss lP and
equality loss lO are given respectively as

lP (a) = max(0,1− a)2 and lO(a) = a2, (13)

while other loss (or inverse likelihood) functions are also
possible.

Semi-supervised RankSVM (SSR). This extension of
RankSVM can be obtained by replacing the ambient regularizer
(‖w‖2 in Eq. 12) with a manifold regularizer:

ESSR(w) =
∑

(i,j)∈P

lP (fi − fj)

+
∑

(i,j)∈O

lO(fi − fj) + λf>Lf, (14)

where f = f|X with f given as Eq. 11, and L is the graph
Laplacian constructed from X : L = D−W , where

Wij =


exp

(
−‖x(i)−x(j)‖

2

σ2

)
if x(i) ∈ N (x(j))

∧ x(j) ∈ N (x(i))
0 otherwise,

(15)

We use the k-nearest neighborhood forN , with scale parameter
σ2 and number of neighbors k as hyper-parameters.

This type of semi-supervised ranking extension has been
commonly used in data retrieval applications [8, 5, 11] and
demonstrated its superior performance over purely supervised
ranking approaches.



Transductive ranking (TR). If our goal is to introduce an
ordering to a given fixed dataset X , as is typical in making in-
ferences on graph-structured data, then semi-supervised ranking
can be formulated as transductive learning, thereby eliminating
the model assumption on f (Eq. 11). In this case, the learning
algorithm directly estimates the ranking evaluations f but not f
itself. The corresponding energy functional can be presented as:

ETR(f) =
∑

(i,j)∈P

lP (fi − fj) +
∑

(i,j)∈O

lO(fi − fj) + λf>Lf.

(16)

Roughly, minimizing the regularizer f>Lf implies that if x(i)
and x(j) are similar in the input space Rm, the corresponding
rank estimates fi and fj should also be similar. This framework
has been proven to be effective in many semi-supervised
learning and spectral clustering applications. Furthermore,
it provides a very intuitive explanation for data retrieval
applications: “if x(i) and x(j) are similar, their relevance to
the query x should be similar as well”.

Kernel-based transductive ranking (KR). In data retrieval
applications of ranking, we care about the relevance of each data
point to a single query point, often to build a binary classifier.
However, in applications with pairwise relations, we may care
about the relative comparisons of all possible pairs of data points
in X (equivalent to a linear ordering of X ). We exploit the rich
structure of all joint relationships to build a new regularizer. To
facilitate this process, we introduce an antisymmetric kernelK :
Rm ×Rm → R which contains relative ordering information:

K(x,y) = −K(y,x)

{
> 0 if Rank(x) > Rank(y),
< 0 if Rank(x) < Rank(y).

A simple example ofK is:

K(x,y) = f(x)− f(y) (17)

assuming that an underling linear ordering function f exists.
Given the kernel function K, our new kernel-based ranking
energy functional (KR) is obtained as:

EKR(K) =
∑

(i,j)∈P

max(0,1−Kij)
2 +

∑
(i,j)∈O

(Kij)
2

+ λtr[K>LK], (18)

where tr[A] is the trace of A, and Kij := K(x(i),x(j)). We
abuse notation and useK to denote a function and a matrix as
its sample evaluation.

Comparison of RS, SSR, and TR. The energy functionals
of semi-supervised RankSVM (SSR) and transductive ranking
(TR) are almost identical (Eqs. 14 and 16, respectively). The
only difference is the model assumption of SSR given in Eq. 11,

which can be replaced by any smooth functions if desired (e.g.,
neural networks [11]). An important advantage of this explicit
function representation is that, since its domain is the entire
input space Rm, it can be directly applied to new data points
X ∗ /∈ X and produce the output estimates f∗ := f|X∗ . For TR,
this is not directly possible since only the function evaluations
f are estimated.3

On the other hand, when the problem is truly transductive,
indirect TR provides a theoretically more sound justification: It
is an instance of learning a function on Riemannian manifolds.
One of the fundamental assumptions in many successful
semi-supervised learning and spectral clustering algorithms
is that data are generated from an underlying Riemannian
manifold (M,g) (g is the metric of M): The probability
distribution p(x) is supported inM [13, 1, 3, 10, 8, 12]. More
precisely, the datasetX is originally presented as a subset ofRm
but it is assumed as a sample from M that is a d-dimensional
embedded submanifold of Rm. In this case, even though the
data points are realized as elements of Rm, their effective
degrees of freedom are limited to d ≤ m. This assumption
leads to a regularization approach that measures and enforces
the smoothness of the function of interest f only along the
manifoldM instead of the ambient Euclidean space Rm.

Once the regularization energy (or the smoothness measure)
on M is defined, learning a function f is facilitated by
combining it with the training error functions (e.g. lP and
lO; Eq. 13). In practice, we do not have access to M directly.
Instead a sample X is presented and therefore, a sample-based
approximation or discretization is used. One of the best
established sample-based regularizers in this aspect is the graph
Laplacian L which is instantiated as a discretization of the den-
sity (p)-weighted Laplace-Beltrami operator ∆p := 1

p∇
∗p∇

onM [4, 1]. Applied to a smooth function f ∈ C∞(M) on a
compact manifoldM , ∆p can measure the first-order variation
of f as weighted by p: Applying Stokes’ theorem on M , the
Harmonic energy of f is represented in terms of ∆pf:

EH(f) :=−
∫
M

f(x)[∆pf](x)dV (x)

=

∫
M

‖∇gf(x)‖2gp(x)dV (x), (19)

where dV is the volume form of g. Furthermore, as |X | →∞,
f converges to a function f on M (f is regarded as f|X ) and,
in this case, the graph Laplacian regularizer corresponds to a
sample-based approximation of EH(f) [1, 4]:

C(M,g)f
>Lf → EH(f) as n→∞, (20)

where C(M,g) is a positive constant depending only on
(M,g). This result provides a theoretical justification of graph
Laplacian-based regularization approaches.

3However, once f is estimated, estimating f∗ subsequently is not difficult.
For instance, one could estimate f∗ by applying the k-nearest neighbors
regression algorithm using f as labels.



The rest of this subsection shows that this interpretation is not
directly applicable to RS and SSR. Take the simplest case: When
M itself is a compact domainD in Euclidean space and the data
distribution p is uniform, the (Euclidean) derivative∇f(x) of a
linear function f at x (Eq. 11) is given as coefficientsw indepen-
dent of x. The corresponding regularization term ‖w‖2 (Eq. 12)
is simply a constant multiple (by the volume ofD) of the Har-
monic energy

∫
D
‖∇f(x)‖2p(x)dx onD. In this special case,

all three algorithms (RS, SSR, TR) essentially use the same reg-
ularizer. When p is non-uniform, SSR and TR can be interpreted
as density-adaptive extensions of RS in the Euclidean space.4

The main difficulty to extend this perspective to gen-
eral manifolds is that the vector ∇f and its coefficients
w = (w1, . . . ,wd) cannot be naturally identified. In general, a
vectorX is represented by a set of coefficientsx = (x1, . . . , xd)
once a basis {E1, . . . ,Ed} is fixed: X =

∑
i=1,...,d x

iEi. The
geometric significance ofX (e.g., its length) is independent of
its coordinate representation x and its basisE. However, in the
above example, we identified the gradient vector∇f with its
coordinate representation w. This can be interpreted such that
w is assumed to be the representation of∇f in canonical co-
ordinates (with respect to a canonical basis) inD. This special
coordinate system is commonly used in Euclidean geometry
as the squared norm ‖∇f‖2 of ∇f (which is a geometric
quantity) is the same as the squared sum of the coefficients
‖w‖2 = w>w =

∑
i=1,...,d(w

i)2 (which is an algebraic
quantity). This justifies the identification of w and∇f .

However, this identification does not always apply to other
coordinate systems even in Euclidean space. For instance, given
the polar coordinate representation (w′ = [w′1, . . . ,w′d]) of
‖∇f‖, ‖∇f‖2 6= w′>w′. In Euclidean space, this distinction
between a vector X and its coordinate representation x is
insignificant as one can always choose canonical coordinates
which are defined over the entire space. However, on a
general manifold, no single coordinate system covers the entire
manifold and therefore canonical coordinates are not defined.
Here, the explicit function representation (Eq. 11) does not lead
to a geometric interpretation.

In this perspective, a major advantage of the transductive
ranking (TR) setting over the model-based approaches
(Eq. 14) is that it facilitates intrinsic (geometric) regularization:
Explicitly calculating the gradient∇gf of f from only sampled
data points X is a challenging problem. However, using the
Stokes’ theorem (Eq. 19) one can approximate the Harmonic
energy of f without having to calculate the gradient vectors but
instead using the the graph Laplacian.

Unfortunately, this approach cannot simply be extended to
regularizing high-order tensors on manifolds (a function is a
0-th order tensor). Sections 2 and 3 of the main paper show that
our kernel-based transductive ranking algorithm is obtained as

4For simplicity, we will henceforth assume that the density p is uniform.
However, the convergence results presented in this paper extends to non-uniform
probability distributions p using the results of Hein et al. [4].

a practical algorithm for intrinsic tensor regularization.

3. Reconstruction capability of low-rank K
approximations

A major drawback of our original kernel-based ranking
approach (KR) is its high computational and memory com-
plexities: It requires explicitly optimizing an n×n-sized kernel
matrix K. Therefore, directly applying KR to large-scale
problems is infeasible. We overcome this limitation by adopting
a low-rank factorized approximation of K: Given a factor
matrix B ∈ Rn×p (p � n), an antisymmetric kernel matrix
K̃ ∈ Rn×n of rank p is constructed as:

K̃ =

n−1∑
i=1

n∑
j=i+1

(
B[:,i]B

>
[:,j] −B[:,j]B

>
[:,i]

)
= BQB>, (21)

whereQ = R> −R withR being the lower triangular matrix
of ones. By regarding K̃ as an approximation ofK, we take the
low-rank matrixB as a new variable to optimize. Unfortunately,
reformulating the KR optimization problem (Eq. 18) based on
this factorization:

EKR(B) = LP (B) +LO(B) + λR(B)

=
∑

(i,j)∈P

max(0,1− [BQB>]ij)
2

+
∑

(i,j)∈O

([BQB>]ij)
2 + λtr[BQ>B>LBQB>],

(22)

renders the energy functional EKR non-convex with respect to
the parameter matrix B. However, we empirically observed
that whenB is initialized with all ones (i.e.B = [1]n[1]>p with
1 = [1, . . . ,1]>), the resulting optimized solutions lead to com-
petitive ranking results. This is further supported by evaluating
the pure reconstruction capability of this factorization and the
optimization initialization in image reconstruction as an exam-
ple (Fig. 1): From the original 1,280× 1,280-sized gray-level
image (Fig. 1.O), we constructed an antisymmetric matrixK as
O−O> after normalizing the gray-level range ofO to [0,1]. The
parameter matrixB is then obtained by minimizing the squared
deviation ‖K−BQB>‖2F fromK withB being initialized with
ones. Even with the rank ofB as low as 30, our reconstruction
BQB> already shows a perceivable image. Furthermore, the
reconstruction error constantly decreased as the rank p increases.

4. Reconstruction of f given K

While the estimated kernel matrixK may not satisfy the re-
construction constraint of f (Eq. 17) for all pairs (x(i),x(j)) ∈
X ×X , f can be easily identified as the least-square approxi-



O K = O−O> R (p = 10 : 10.26) R (p = 30 : 6.89)

R (p = 50 : 5.14) R (p = 70 : 4.10) R (p = 90 : 3.43) R (p = 110 : 2.94)

Figure 1. Low-rank approximation R = BQB> (Eq. 21) of antisymmetric matrix K with varying rank p. For each reconstruction, we show
the root-mean-squared deviation from K (×100). The approximation quality is good even for low-rank approximations (e.g., p = 30).

mation:5 The reconstruction cost C(f) of f givenK is given as:

C(f) =
1

2

∑
i,j

(fi − fj −Kij)
2 (23)

= f>(D− 11>)f − 2f>K1 + c,

where c = 1
2

∑
ijK

2
ij, D = nI and we used K> = −K.

Since D − 11> is conditionally positive definite, C is not
strictly convex. Therefore, we uniquely identify the optimal
reconstruction solution f∗ by adding a ridge regularizer:

CR(f) := C(f) + εf>f, (24)

where ε is a small positive value fixed at 10−8. Since CR is now
strictly convex, f∗ is obtained by equating the derivative of CR
with zero:

0 = 2(D− 11>)f − 2K1 + 2εf

⇔ f∗ = ((D− 11>) + εI)−1K1.

Now re-arranging the summands in the system matrix
G = ((D − 11>) + εI)−1 using the Sherman-Morrison-
Woodbury formula, we obtain:

G = H − hh>

1 + 1>h
,

5It is possible to penalize the deviations from the equalities Eq. 17 as
a new regularizer. This can be efficiently calculated in a similar way as f
reconstruction. However, the resulting improvement in ranking performance
is marginal and it requires tuning an additional regularization hyper-parameter.
We abandoned this possibility for the sake of simplicity.

where H = (D + εI)−1 and h = H1. Therefore, f∗ is
obtained based on matrix-vector multiplications:

f∗ = HK1−
(
h[h>K1]

1 + 1>h

)
. (25)

Note that H and h can be calculated before K is optimized.
When the low-rank approximation BQB> of K is adopted
(Eq. 21), each occurrence of K in Eq. 25 can be replaced by
BQB> in Eq. 25.

5. Experimental results
We compare our kernel-based transductive ranking algo-

rithm (KR) to the relative attributes RankSVM approach (RS,
Eq. 12 [9]), its model-based semi-supervised extension (SSR,
Eq. 14) which can be regarded as an example of existing work
in data retrieval applications [5, 11], and its straightforward
transductive extension (TR). We also compare with deep
neural networks that are optimized based on stochastic gradient
descent (DR) [14].

Figure 2 shows the mean rank coefficients with correspond-
ing error bars (with length twice the standard deviation). Deep
learning algorithm (DR) outperformed RS for all datasets
demonstrating the effectiveness of deep learning for ranking
problems. Also, except for PubFig, the two transductive
learning algorithms TR and KR constantly outperformed
RankSVM (RS). This demonstrates the effectiveness of
exploiting unlabeled data in relative attribute applications.



However, unlike TR and KR, performance of the model-based
semi-supervised extension (SSR) is roughly on par with RS (it
is better than RS on ETH-80 and DTD, and worse on OSR and
PubFig). Our kernel-based ranking algorithm (KR) significantly
improves upon the other algorithms including the baseline
transductive ranking (TR).

In particular, for MNIST, KR resulted in≈ 40% higher rank
coefficients than other algorithms when the number of labels
per class were less than 10. On OSR, DR and KR perform
best. The improvement of KR over TR is especially significant
when the number of labels l is limited. As l increases, the
performance gap between these two algorithms narrows and
eventually, they become almost identical as shown in the
corresponding results of DTD.

Although the performances of KR and TR on this dataset
are roughly equal, their performance variations across different
attributes vary significantly. This suggests that, from the
performance perspective, DR and KR are complementary.
Figure 2 demonstrates this by simply choosing either the DR
or KR results based on the validation error (DR+KR). This
constructs a ranker that frequently outperforms other algorithms.

A notable exception to this tendency is PubFig, where DR is
clear winner. This indicates that semi-supervised learning might
not be always useful. One possible explanation is that PubFig
has insufficient data points to reveal the underlying manifold
structure upon which the semi-supervised algorithms build
(only 772 data points, while other datasets are of order thousand
or ten thousand). Another explanation is simply that the data do
not lie on a low-dimensional manifold. Unfortunately, verifying
these possibilities is a challenging problem. Furthermore, it is
not straightforward to predict which (class of) algorithms would
lead to better performances on specific datasets or problems. In
practice, users would interact (provide labels) with data and be
able to provide feedback on the utility of different algorithms. In
this respect, the experiments demonstrate that our kernel-based
ranking algorithm provides a good alternative to RankSVM and
deep learning.
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Figure 2. Performance of different ranking algorithms for eight datasets. In raster order, first five: x-axis shows the number of labels per class;
last three: x-axis corresponds to the indices of attributes to learn. In all but PubFig, our KR is comparable or better. Furthermore, combining
DR and KR, we can construct a ranker that frequently outperforms other algorithms (cyan line).


