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1. Derivation for Back-propagation
For illustration, we first provide the forward pass, then derive the backward pass. Regarding notation, we follow the matrix

notation that all the vectors are column vectors, except that the gradient vectors are row vectors.

1.1. Forward Pass

Given mini-batch layer inputs {xi, i = 1, 2...,m} where m is the number of examples, the ZCA-whitened output x̂i for
the input xi can be calculated as follows:
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(xj − µ)(xj − µ)T (2)

Σ = DΛDT (3)
U = Λ−1/2DT (4)
x̃i = U(xi − µ) (5)
x̂i = Dx̃i (6)

where µ and Σ are the mean vector and the covariance matrix within the mini-batch data. Eqn. 3 is the eigen decomposition
where DTD = I and Λ is a diagonal matrix where the diagonal elements are the eigenvalues. Note that x̃i are auxiliary
variables for clarity. Actually x̃i are the output of PCA whitening. However, PCA whitening hardly works for deep networks
as discussed in the paper.
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1.2. Back-propagation

Based on the chain rule and the result from [4], we can get the backward pass derivatives as follows:
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where L is the loss function, K ∈ Rd×d is 0-diagonal with Kij = 1
σi−σj

[i 6= j], the � operator is element-wise matrix

multiplication, (∂L∂Λ )diag sets the off-diagonal elements of ∂L∂Λ to zero, and ( ∂L∂Σ )sym means symmetrizing ∂L
∂Σ by ( ∂L∂Σ )sym =

1
2 ( ∂L∂Σ

T
+ ∂L

∂Σ ). Note that Eqn. 11 is from the results in [4]. Besides, a similar formulation to back-propagate the gradient
through the whitening transformation has been derived in the context of learning an orthogonal weight matrix in [3].

1.3. Derivation for Simplified Formulation

For more efficient computation, we provide the simplified formulation as follows:
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of how to derive Eqn. 14 are as follows.
Based on Eqn. 4, 5, 8 and 9, we can get
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Based on Eqn. 4 and 10, we have:
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Based on Eqn. 11, we have :
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2. Computational Cost of DBN
In this part, we analyze the computational cost of DBN module for Convolutional Neural Networks (CNNs). Theoretically,

a convolutional layer with a d×w× h input, batch size of m, and d filters of size Fh × Fw costs O(d2mhwFhFw). Adding
DBN with a group size K incurs an overhead of O(dKmhw + dK2). The relative overhead is K

dFhFw
+ K2

dmhwFhFw
, which

is negligible when K is small (e.g. 16).
Empirically, our unoptimized implementation of DBN costs 71ms (forward pass + backward pass, averaged over 10 runs)

for full whitening, with a 64×32×32 input, a batch size of 64. In comparison, the highly optimized 3×3 cudnn convolution
[1] in Torch [2] with the same input costs 32ms.

Table A. Time costs (s/per epoch) on VGG-A and CIFAR datasets with different groups.

Methods Training Inference
BN 163.68 11.47
DBN-G8 707.47 15.50
DBN-G16 466.92 14.41
DBN-G64 297.25 13.70
DBN-G256 440.88 13.64
DBN-G512 1004 13.68



Table B. Time costs (s/per epoch) on residual networks and wide residual network on CIFAR.

Training Inference
Method BN DBN-scale BN DBN-scale
Res-56 69.53 86.80 4.57 5.12
Res-44 55.03 72.06 3.65 4.36
Res-32 40.36 57.47 2.80 3.33
Res-20 25.97 42.87 1.94 2.44

WideRes-40 643.94 659.55 25.69 26.08
WideRes-28 440 457 36.56 38.10

Table A, B show the wall clock time for our CIFAR-10 experiments described in the paper. Note that DBN with small
groups (e.g. G8) can cost more time than larger groups due to our unoptimized implementation: for example, we whiten
each group sequentially instead of in parallel, because Torch does not yet provide an easy way to use linear algebra library of
CUDA in parallel. Our current implementation of DBN has a low GPU utilization (e.g. 20%-40% on average), versus 95%+
for BN. Thus there is a lot of room for a more efficient implementation.
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