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1. Network Architectures
1.1. Experiments on Digit Classification

In the experiment on digit classification, we use the same
architecture as the state-of-the-art methods. Concretely, the
state-of-the-art method of MNIST ↔ USPS and SVHN
→ MNIST is UNIT [3], and that of MNIST → SVHN is
ATDA [6], so we use the same architectures as the original
papers, detailed in Table 1 and Table 2.

Encoder Architecture
1st layer CONV-(N32,K5,S1), PReLU, MAX-POOL-(K2,S2)
2nd layer CONV-(N64,K5,S1), PReLU, MAX-POOL-(K2,S2)
3rd layer CONV-(N128,K7,S1), PReLU
4th layer CONV-(N256,K1,S1), PReLU
Classifier Architecture
1st layer FC-(N10)

Generator Architecture
1st layer DECONV-(N128,K4,S4), BN, PReLU
2nd layer DECONV-(N64,K3,S2), BN, PReLU
3rd layer DECONV-(N32,K3,S2), BN, PReLU
4th layer DECONV-(N1,K6,S1), TanH

Discriminators Architecture
1st layer CONV-(N32,K5,S1), PReLU, MAX-POOL-(K2,S2)
2nd layer CONV-(N64,K5,S1), PReLU, MAX-POOL-(K2,S2)
3rd layer CONV-(N512,K4,S1), PReLU
4th layer FC-(N11)

Table 1: The architectures of our DupGAN used in MNIST ↔
USPS. In each layer, the (N,K, S) stand for number of output
channels, kernel size, and stride, respectively.

1.2. Experiments on Object Recognition

In the experiment on object recognition, we use the same
architecture as the state-of-the-art method DRCN [1], i.e.,
AlexNet [2] is used as the architecture of the encoder and
discriminators, and fc6-conv5-conv4 of AlexNet [2] is as
the architecture of the generator. For the training set is too
small to train such large model as AlexNet [2] from scratch,
we use the pre-trained AlexNet [2] with ImageNet [5], fix
the layers conv1-conv3, finetune conv4-fc7, and train the
classifier layer fc8 from scratch, as in DAN [4] and DRCN
[1]. The architectures are detailed in Table 3.
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7th layer FC-(N4096), ReLU
8th layer FC-(N32)

Table 3: The architectures of our DupGAN used in object recognition. In each
layer, the (N,K, S) stand for number of output channels, kernel size, and stride,
respectively. The first 6 layers of discriminators are weight-sharing for two domains.

Information Processing Systems (NIPS), pages 1097–1105,
2012.

[3] M. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image
translation networks. arXiv preprint arXiv:1703.00848, 2017.

[4] M. Long, Y. Cao, J. Wang, and M. I. Jordan. Learning transfer-
able features with deep adaptation networks. In Proceedings
of the IEEE International Conference on Machine learning
(ICML), pages 97–105, 2015.

[5] O. Russakovsky, J. Deng, H. Su, and et al. Imagenet large s-
cale visual recognition challenge. IEEE International Journal
of Computer Vision (IJCV), 115(3):211–252, 2015.

[6] K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training
for unsupervised domain adaptation. arXiv preprint arX-
iv:1702.08400, 2017.

2


