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In this supplementary material, we include more imple-
mentation details, more ablation analyses, and more exper-
imental results.

1. Additional Implementation Details

1.1. Using the ResNet50 Backbone

When using the ResNet50 network [1] as the backbone,
we modify the 4th and the 5th residual blocks to have strides
of 1 and dilations of 2 and 4, respectively, thus making the
encoder have a stride of 8. Then we progressively fuse the
feature maps from the 5th to the 1st Conv blocks in the de-
coding modules D5 to D1. We adopt global PiCANets in
D5 and D4, and local PiCANets in the last three modules,
respectively. In each decoding module Di, we use the final
Conv feature map of the ith Conv block in the ResNet50
encoder (e.g. res4f and res3d) as the incorporated encoder
feature map Eni and do not adopt the BN and the ReLU
layers on it as shown in Figure 3(b) since the ResNet50 net-
work has already used BN layers after each Conv layer. The
final generated saliency map is of size 112 × 112 since the
conv1 layer has a stride of 2.

As the same as when using the VGG-16 backbone, we
empirically set the loss weights in D5,D4, · · · ,D1 as 0.5,
0.5, 0.8, 0.8, and 1, respectively. The minibatch size of our
ResNet50 based network is set to 8 due to the GPU memory
limitation. The other hyperparameters are set as the same
as the ones used in the VGG-16 based network. The testing
time for one image is 0.236s.

1.2. Using the CRF Post-processing

When we adopt the CRF post-processing method, we use
the same parameters and the same code used by [2]. It ad-
ditionally costs another 0.09s for each image.

Table 1. Effectiveness of progressively embedding PiCANets.
“+75G432LP” means using Global PiCANets in D7 and D5, and
Local PiCANets in D4, D3, D2. Other settings can be inferred
similarly. Blue indicates the best performance.

Settings DUT-O [11] DUTS-TE [8]

Fβ Fωβ MAE Fβ Fωβ MAE

U-Net [7] 0.761 0.651 0.073 0.819 0.715 0.060

+7GP 0.772 0.660 0.071 0.826 0.722 0.058
+75GP 0.778 0.662 0.071 0.834 0.724 0.057
+75G4LP 0.785 0.678 0.069 0.840 0.736 0.056
+75G43LP 0.791 0.682 0.068 0.848 0.740 0.055
+75G432LP 0.794 0.691 0.068 0.851 0.748 0.054

2. Experiments
2.1. Effectiveness of Progressively Embedding Pi-

CANets

Here we report a more detailed ablation study of progres-
sively embedding PiCANets in each decoding module. As
shown in Table 1, progressively embedding global and local
PiCANets inD7,D5,D4, · · · ,D1 can consistently improve
the saliency detection performance, thus demonstrating the
effectiveness of our proposed PiCANets and the saliency
detection model.

2.2. More Visualization of the Learned Attention
Maps

We illustrate more learned attention maps in Figure 1 for
the five attended decoding modules. Figure 1 shows that the
global attention learned in D7 and D5 can attend to fore-
ground objects for background pixels and backgrounds for
foreground pixels. The local attention learned in D4, D3,
and D2 can attend to regions with similar semantics with
the referred pixel.

2.3. More Visual Comparison Between Our Model
and Stata-of-the-Art Methods

We also show more qualitative results in Figure 2. It
shows that compared with other state-of-the-art methods,
our model can highlight salient objects more accurately and
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Figure 1. Illustration of the learned attention maps of the proposed PiCANets. The first column shows two images and their corresponding
ground truth masks and the predicted saliency maps of our model while the last five columns show the attention maps in five attended
decoding modules, respectively. For each image, we give three example pixels (denoted as red dots. The first row shows a background
pixel and the bottom two rows show two foreground pixels). The attended context regions are marked by red rectangles.

uniformly under various challenging scenarios even without
using post-processing techniques.

2.4. Failure Cases

We show some failure cases of our PiCANet-R model in
Figure 3. Basically, our model usually fails when the im-
age has no obvious foreground objects, as shown in (a) and
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Figure 2. Qualitative comparison. (GT: ground truth)
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Figure 3. Failure cases. The three images in each set are the input image, the ground truth, and our result, respectively.

(b). (c) shows that when the foreground object is extreme-
ly large, our model is also easy to fail. While these two
situations are also challenging to other traditional and deep
learning based saliency models, indicating that we still have
much room to improve current models. (d) shows that the
non-uniform illumination on the object may also mislead
our model.
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