
A. Supplementary Appendix for “Learning to Find Good Correspondences”

A.1. Dataset details

Here we detail the sequences used for training and testing in Table A.1. The image numbers reported for SUN3D [34]
are after subsampling the video sequences by a factor of 10. For SUN3D we choose 9 sequences for training, and use the
15 sequences previously used by [31], collectively marked with ‡, only for testing. We generate disjoint training, validation
and test subsets by splitting the images in each set in a 60-20-20 ratio, as explained in Section 4.1. For ‡ we take up to 500
images with a 0-0-100 ratio, as we do not train any model on them.

The last column assigns a label (a-u) to each set for convenience, which is used in Section A.3. Our best model is trained
concatenating the datasets marked with ⌃ and 4.

Scene Images 3D points Avg. views Label

Yahoo YFCC100M [28, 13]

‘Buckingham’ 1676 152003 11.83 a
‘Notre Dame’ 3767 502017 35.41 b
‘Sacre Coeur’ 1179 152594 19.63 c
‘Saint Peter’s’ 2506 235668 26.96 ⌃
‘Reichstag’ 75 19881 7.74 d

Multi-View Stereo [27]

‘Fountain’ 11 – – e
‘HerzJesu’ 8 – – f

SUN3D [34] (training and validation)

‘Harvard 1’ (harvard conf big/hv conf big 1) 455 – – –
‘Harvard 2’ (harvard computer lab/hv c1 1) 543 – – –
‘Harvard 3’ (harvard corridor lounge/hv lounge corridor2 1) 540 – – –
‘Harvard 4’ (harvard corridor lounge/hv lounge corridor3 whole floor) 629 – – –
‘Brown 1’ (brown bm 3/brown bm 3) 841 – – 4
‘Brown 2’ (brown cs 4/brown cs4) 877 – – –
‘Hotel 1’ (hotel ucla ant/hotel room ucla scan1 2012 oct 05) 1305 – – –
‘Hotel 2’ (hotel pedraza/hotel room pedraza 2012 nov 25) 1065 – – –
‘Home’ (home pt/home pt scan1 2012 oct 19) 2407 – – –

SUN3D [34] (test only, chosen by [31]) (‡)

brown cogsci 2/brown cogsci 2 259 – – g
brown cogsci 6/brown cogsci 6 500 – – h
brown cogsci 8/brown cogsci 8 126 – – i
brown cs 3/brown cs3 340 – – j
brown cs 7/brown cs7 251 – – k
hotel florence jx/florence hotel stair room all 500 – – l
harvard c4/hv c4 1 224 – – m
harvard c10/hv c10 2 81 – – n
harvard corridor lounge/hv lounge1 2 154 – – o
harvard robotics lab/hv s1 2 159 – – p
mit 32 g725/g725 1 377 – – q
mit 46 6conf/bcs floor6 conf 1 327 – – r
mit 46 6lounge/bcs floor6 long 500 – – s
mit w85g/g 0 387 – – t
mit w85h/h2 1 500 – – u

Table 1. Datasets.



Figure 9. Results for the model trained and tested on ‘Reichstag’.

Figure 10. Results for the model trained on ‘Reichstag’ (d), and tested on every other ‘Outdoors’ sequence, i.e., a-c, e, f and ⌃. We average
the results over each sequence.

A.2. Training with limited data
Due to space constraints, the paper only reports results with our best model, which is the concatenation of ‘St. Peter’s’ (⌃)

and ‘Brown 1’ (4). Here we replicate the experiments of Section 4.5.1 and Section 4.5.2, i.e., we train a model and evaluate
it first on the same sequence and then on every other ‘Outdoors’ sequence, respectively, but now using only our smallest

training sequence. The dataset in question is ‘Reichstag’ (d) from the ‘Outdoors’ subset, which contains only 59 images for
training, 8 for validation and 8 for testing. Note that after accounting for visibility constraints, this still lets us extract over
1500 image pairs for training and about 35 for each validation and testing.

Fig. 9 shows results training and testing on (different subsets of) the same sequence, and Fig. 10 shows how the model
generalizes over every ‘Outdoors’ sequence other than itself, i.e., a-c, e, f, and ⌃. We follow the same protocols as in
Section 4.5.1 and Section 4.5.2. The best results are obtained with LIFT features, which is consistent with our previous
observations. Our method outperforms all the baselines, with LIFT plus RANSAC and GMS plus RANSAC being the closest
competitors. More importantly, when generalizing to other scenes with so little training data (Fig. 10) we still outperform
GMS by 65%-200% relative at different error thresholds, and RANSAC by about 50% relative.

A.3. Per-sequence results
We could not show per-sequence results in the paper due to space constraints. Fig. 11 provides separate results for every

testing sequence for our approach and for every baseline at multiple error thresholds. Again, we use our models trained on
a single sequence from each data type, marked respectively with ⌃ and 4 (we do the same for G3DR [36]). The sequences
used for testing include ‘Outdoors’ datasets a-f in Table A.1, which are averaged in the column marked ⇤, and ‘Indoors’
datasets g-u, which are averaged in ‡. We provide numbers on top of the bars for ⇤ and ‡. Our approach outperforms every
baseline, with LIFT performing better than SIFT on the ‘Outdoors’ subset and the opposite for the ‘Indoors’ subset.

Note that DeMoN only achieves good performance for e and f in the ‘Outdoors’ sequences, and completely fails for
YFCC100M sequences. G3DR shows even worse performance, hinting that sparse methods are preferable when it comes to
photo-tourism datasets.

A.4. Ransac post-processing
As outlined in 4.4, RANSAC for post-processing allows us to greatly improve both the performance and the speed over

RANSAC. In Table A.4 we provide results for the generalization experiments of Section 4.5.2, for stand-alone RANSAC,



Figure 11. Results for every sequence in the ‘Outdoors’ subset (a-f) and the ‘Indoors’ subset (g-u). The entry labeled ⇤ denotes the average
performance over the ‘Outdoors’ subset, and ‡ the average performance over the ‘Indoors’ subset. Labels are listed in Table A.1.



and our method using either the 8-point algorithm or RANSAC for post-processing, which were not originally included in
the paper due to spatial constraints. Note that this boost is only possible at test time, due to the differentiability requirement
for training.

Outdoors Indoors AverageSIFT LIFT SIFT LIFT

RANSAC mAP@20o 0.221 0.291 0.097 0.115 —

Ours + 8-point mAP@20o 0.264 0.343 0.148 0.143 —
w.r.t. RANSAC +19.5% +17.9% +52.6% +24.3% +28.6%

Ours + RANSAC mAP@20o 0.462 0.530 0.242 0.222 —
w.r.t. RANSAC +109.0% +82.1% +149.5% +93.0% +108.4%

Table 2. RANSAC vs Ours with 8-point vs Ours with RANSAC. Both SIFT and LIFT use 2k keypoints.

A.5. Differentiating through eigendecomposition
To differentiate through the eigendecomposition, we rely on the TensorFlow implementation. Here, we provide a short

definition for completeness. For more details, we refer the interested readers to [15]. In [15], it is shown that for a matrix
X, which can be decomposed into X = U⌃U>, where U is the matrix of eigenvectors and ⌃ is a diagonal matrix with
eigenvalues, the derivative w.r.t. the eigenvectors are

dU = 2U
�
K� (U>

dXU)sym
�
, (10)

where Msym = 1
2 (M

> +M), and

Kij =

(
1

�i��j
, i 6= j

0, i = j
, (11)

and �i is the i-th eigenvalue.


