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A. More Results on Semi-supervised Learning

This section describes more experiment results on the
semi-supervised learning using LGAN. Besides the small
discriminator structure employed in section 5.3, we further
test LGAN with a larger CNN architecture, which is the
same one as the “Conv-Large” used in [2]. For convenience,
we will refer this larger discriminator as Conv-Large, while
the one used in Section 5.3 as “Conv-Small” in the follow-
ing. We compare the Conv-Large LGAN with the state-
of-the-art semi-supervised learning methods (which are not
necessarily the GAN-based) and report the results on both
CIFAR-10 and CIFAR-100 datasets in this section. The ar-
chitecture of the generator will keep the same as that used
in Conv-Small experiments.

A.1. Discriminator Architectures

Table 1 and 2 summarize the architecture of Conv-Small
and Conv-Large, respectively. We also apply the weight

Name Description
Input 32× 32 RGB image
drop1 Dropout p = 0.2
conv1a 96, 3× 3, pad=1, stride=1, LReLU
conv1b 96, 3× 3, pad=1, stride=1, LReLU
conv1c 96, 3× 3, pad=1, stride=2, LReLU
drop2 Dropout p = 0.5
conv2a 192, 3× 3, pad=1, stride=1, LReLU
conv2b 192, 3× 3, pad=1, stride=1, LReLU
conv2c 192, 3× 3, pad=1, stride=2, LReLU
drop3 Dropout p = 0.5
conv3a 192, 3× 3, pad=0, stride=1, LReLU
conv3b 192, 1× 1, LReLU
conv3c 192, 1× 1, LReLU
pool1 Global mean pooling 6× 6 → 1× 1
dense Fully connected 192 → 10
output Softmax

Table 1. The network architectures of Conv-Small

normalization [5] to all convolutional and dense layers in
both architectures.

A.2. Training Details for Conv­Large

Like in training the Conv-Small, we adopt Adam opti-
mizer to train both the discriminator and generator. The
learning rate is set to 4 × 10−4, and the maximal training
epoch is 1, 200. We gradually anneal the learning rates to
zero during the last 400 epochs. The other settings are kep-
t as same as those for training Conv-Small (Section 5.3).
For CIFAR-100, which consists of 50, 000 32 × 32 train-
ing images and 10, 000 test images in a hundred classes, we
change the dropout rate of drop1 layer from 0.2 to 0.1 and
the output dimension of the last layer to 100. We also adopt
early stopping – the training is terminated if the validation
error stops decreasing over 100 consecutive epochs after the

Name Description
Input 32× 32 RGB image
drop1 Dropout p = 0.2
conv1a 128, 3× 3, pad=1, stride=1, LReLU
conv1b 128, 3× 3, pad=1, stride=1, LReLU
conv1c 128, 3× 3, pad=1, stride=1, LReLU
pool1 Maxpooling 2× 2
drop2 Dropout p = 0.5
conv2a 256, 3× 3, pad=1, stride=1, LReLU
conv2b 256, 3× 3, pad=1, stride=1, LReLU
conv2c 256, 3× 3, pad=1, stride=1, LReLU
pool2 Maxpooling 2× 2
drop3 Dropout p = 0.5
conv3a 512, 3× 3, pad=0, stride=1, LReLU
conv3b 256, 1× 1, LReLU
conv3c 128, 1× 1, LReLU
pool3 Global mean pooling 6× 6 → 1× 1
drop4 Dropout p = 0.1
dense Fully connected 128 → 10
output Softmax

Table 2. The network architectures of Conv-Large
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Method CIFAR-10 CIFAR-100
Π model [1] 12.36± 0.31 39.19± 0.36

Temporal Ensembling [1] 12.16± 0.24 38.65± 0.51
Sajjadi et al. [4] 11.29± 0.24 -

VAT [2] 10.55 -
VadD [3] 11.32± 0.11 -

LGAN (Conv-Large) 9.77± 0.13 35.52± 0.33

Table 3. Classification errors on both CIFAR-10 and CIFAR-100 with 4, 000 and 10, 000 labeled training examples respectively. The best
result is highlighted in bold.

600th epoch. The two hyper-parameters µ and η are chosen
based on a separate validation set.

A.3. Experimental Results for Conv­Large

We compare the LGAN using Conv-Large discriminator
with state-of-the-art semi-supervised baselines. The result-
s are reported in Table 3. Note that we used 4, 000 and
10, 000 labeled training examples for CIFAR-10 (400 im-
ages per class) and CIFAR-100 (100 images per class) re-
spectively and the rest of training data unlabeled. From the
table, we can see that LGAN with Conv-Large outperforms
the other compared methods on both datasets.

References
[1] S. Laine and T. Aila. Temporal ensembling for semi-

supervised learning. arXiv preprint arXiv:1610.02242, 2016.
2

[2] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual ad-
versarial training: a regularization method for supervised and
semi-supervised learning. arXiv preprint arXiv:1704.03976,
2017. 1, 2

[3] S. Park, J.-K. Park, S.-J. Shin, and I.-C. Moon. Adversarial
dropout for supervised and semi-supervised learning. arXiv
preprint arXiv:1707.03631, 2017. 2

[4] M. Sajjadi, M. Javanmardi, and T. Tasdizen. Regularization
with stochastic transformations and perturbations for deep
semi-supervised learning. In Advances in Neural Information
Processing Systems, pages 1163–1171, 2016. 2

[5] T. Salimans and D. P. Kingma. Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural
networks. In Advances in Neural Information Processing Sys-
tems, pages 901–909, 2016. 1


