
WILDTRACK: A Multi-camera HD Dataset for

Dense Unscripted Pedestrian Detection

– Supplementary Material –

Tatjana Chavdarova1, Pierre Baqué2, Stéphane Bouquet2,
Andrii Maksai2, Cijo Jose1, Timur Bagautdinov2, Louis Lettry3,

Pascal Fua2, Luc Van Gool3, and François Fleuret1

1Machine Learning group, Idiap Research Institute & École Polytechnique Fédérale de
Lausanne

2CVLab, École Polytechnique Fédérale de Lausanne
3Computer Vision Lab, ETH Zurich

{firstname.lastname}@{idiap1,epfl2,vision.ee.ethz3}.ch

Foremost, we elaborate in more detail the annotation procedure in Section 1. We then list details
regarding the provided annotations in Section 2. Details on our implementation of the camera calibration
are given in Section 3. Section 4 provides further details of the statistics summirized in Section 3.4 of the
paper. In Section 5 we discuss recommended training and testing splits of the WILDTRACK dataset.
Finally, we provide additional tracking results in Section 6.

1 Annotation process

Annotation tool. As an area of interest we consider a 12×36m ground plane of the 3D space lying in
the intersection of the fields of view of the seven cameras. We discretize this ground surface as a grid
of 480×1440 points, what corresponds to an offset of 2.5cm in both directions. Given such a regular
high-density grid of, at each location we construct a cylinder volume whose height and width correspond
to the humans’ average height and width. Each such cylinder projects into the separate 2D views as
a rectangle. The position of these rectangles in all of the views is then calculated in pixel coordinates
using the camera calibration. Finally, we use these pre-calculated projections to integrate them into our
annotation tool.

The labelling tool is a Python-based web application. It is built with a very responsive design, and its
graphical user interface (GUI) is illustrated in Fig. 1. Our annotation tool is hosted on a website1, which
was created and managed using Django. The source-code is also available for download2.

For the selected frame to be annotated, the tool displays the seven corresponding images at the same
time (see Fig. 1). In order to provide a multi-view annotation, the user of the tool first has to mark the
placement of the bounding boxes. This is achieved by a single click, whose location should be at the
feet of the person to be annotated, in either of the views where it is visible. Instantaneously, the boxes
automatically appear in the views in which the person is visible. To complete the multi-view annotation,
the user shall next adjust the position of the bounding boxes.

For this purpose, the keyboard arrows shall be used. More precisely, the left, right, up and down keys
should be used in order to shift the 3D imaginary cylinder on the ground plane. To help annotators, the
correspondence “key-direction” for each of the views is also depicted in the tool and optionally visible
while annotating. In addition, a zooming feature can be used, that once a multi-view annotation is
selected, allows for zooming-in the corresponding bounding boxes. This was implemented in order to make
it easier for the annotators to obtain more precise locations of the annotations. The arrow key presses
that translate into a movement of the 3D cylinder, are instantly visible in all of the views that capture
the person currently being annotated. After getting used to the annotation process, annotators become
more and more precise on the first step: placing the bounding boxes, which significantly reduces the time
required to annotate as less adjustments are required.

1https://pedestriantag.epfl.ch/
2https://github.com/cvlab-epfl/multicam-gt

1



Figure 1: Graphical User Interface (GUI) of our multi-view labeller.

Once the frame has been fully labelled and the user has moved to the next frame, optionally (s)he is
able to reload the annotations from the previous frame, traverse each of the annotations, and refine their
positions. Additional features such as keyboard short-cuts are also supported for these utilities.

Finally, a more elaborate version of these instructions is provided in the annotation tool, accompanied
with numerous illustrations.

Annotating on Mechanical Turk. We used Amazon Mechanical Turk [3] to obtain our annotations.
Due to the risk of the annotators prioritizing profit over quality of the annotations, we were highly involved
in the process.

In our experience of annotating frames of our dataset, pre-loading annotations from the previous frame,
traversing these, and adjusting each, often proves less time-consuming then starting to annotate each
multi-view frame from scratch. This motivated providing the feature of pre-loading annotations explained
above. Hence, to help accelerate the annotation process the recruited annotators were assigned frames in
batches of size 10. To ensure that this feature is not negatively utilised by the annotators, we also store
flags indicating if these “imported” annotations have been adjusted or not.

As explained, annotators were found via Mechanical Turk. However, since the dataset is quite
challenging, annotating locations in 3D for crowded scenes may require substantial attention and dedication.
Despite all our efforts to make the tool easy to use, it turned out that most MT workers were reluctant to
provide this level of effort and they were almost never achieving the required quality. We therefore had to
select few workers to whom we personally explained the level of detail needed. They were then able to
annotate with higher accuracy.

On average, annotating one frame takes ∼10 minutes for a trained annotator, and approximately half
of that when importing the annotations from the previous frame.

2 Annotations

2.1 File formats

The annotations are provided in a separate file per each multi-view frame. Each annotation file is provided
in the JavaScript Object Notation (JSON) open-standard file format. This format is human readable and
programming language independent. Many programming languages integrate libraries that offer support
for working with these files, including Python.

Each multi-view annotation contains the following information:

2



• Person ID: A unique identifier of a person appearing in the sequence.

• 3D location: (X, Y) location of the target in meters on the ground plane with respect to the origin.

• pixel coordinates in each of the views: For each of the seven cameras, the detection location
in pixel coordinates for that view are given: {(xc

min, y
c
min, x

c
max, y

c
max)}, c = 1, . . . , 7.

2.2 Memory size

Images. We refer as a frame a set of 7 images, synchronized with the same time stamp. The extracted
and pre-processed frames with removed distortions contain 36000 × 7 images, while each image is of
size ∼2.9 MB. This corresponds to 10 frames per second for 1h and 7 cameras. Currently there are 400
annotated frames, at 2fps (see Section 3.4).

Videos. Each of the 7 videos is approximately 1:50h long, and of size ∼25GB.

3 Camera calibration

Intrinsic. The intrinsic calibration was obtained for each camera separately. For this purpose we used
the OpenCV function calibrateCamera which provides also the distortion coefficients. Precisely, we used 3
radial distortion coefficients. In particular, we used the asymmetric circle grid provided by OpenCV with
sizes of 4× 11, and 20 frames to obtain each camera’s intrinsic matrix. To obtain higher accuracy, we
made sure that the target (the grid of circles), is captured in as many parts of the field of view of the
camera as possible.

Extrinsic. In our implementation, for each of the seven views we used 23, 26, 15, 19, 21, 28 and 19
pairs of points, respectively. We used the OpenCV ’s module solvePnP [2], which given the intrinsics
provides the rotation and the translation vector. The 3D measurements and the annotated corresponding
points will also be made available, so as camera calibration methods could make use of these.

Bundle adjustment. In our implementation, we used the open source C++ library Ceres [1], which
offers extensive support for bundle adjustment problems. We used linear optimisation which in Ceres is
referred to as Iterative Schur.

4 Additional statistics

0 50 100 150 200 250 300 350
0%
2%
5%
8%

11%
14%
17%
20%
23%
25%

Figure 2: Histogram of the number of frames in which one person appears: the normalized number of
different identites (y-axis) that appear within a range of number of frames (x-axis).

Fig. 2 depicts the number frames in which a person appears. In particular, we consider a frame rate of
2 fps, a total number of frames of 400, and 313 different identities. On average, each person appears in
30.41(47.87) frames, and the mode is 22 frames.

3



5 Recommended splits of the WILDTRACK dataset

We regard two use-cases of the WILDTRACK dataset, and we discuss recommended partitions for each.
Please consider visiting the website for downloading the dataset3, for up to date details.

Scenario A: Supervised methods. We recommend that the last 10% of the annotated frames at 2
fps are used for testing. This amounts to a total of 40 frames at 2 fps. For training one shall use the
remaining portion of the dataset, with optional sampling frame rate.

Scenario B: Unsupervised methods. In this case, we recommend that the entire annotated portion
at a fixed frame rate of 2 fps is used for benchmarking unsupervised methods. The remaining portion for
which annotations are not provided can be used for training, using an optional sampling rate.

6 Additional tracking benchmarks

Table 1 shows additional tracking results, where we use the same notation for the methods as in the paper
(see Section 4.2 in the paper).

Table 1: Additional tracking results on the WILDTRACK dataset.

Method IDF1 IDP IDR MT PT ML FP FN IDs FM MOTA MOTP

ResNet-DeepMCD+KSP 62.5 84.9 49.5 11 11 19 154 2081 35 30 50.9 75.1
ResNet-DeepMCD+KSP+ptrack 64.2 93.1 49.0 10 9 22 49 2239 5 5 50.4 75.9
ResNet-View 1+KSP 28.5 18.7 60.7 34 4 0 10050 257 162 58 -140.9 59.0
ResNet-View 1+KSP+ptrack 30.2 20.1 60.6 30 8 0 9173 410 131 51 -123.5 58.0
ResNet-View 2+KSP 29.1 19.4 58.8 28 6 1 8428 265 172 47 -121.3 50.7
ResNet-View 2+KSP+ptrack 31.4 21.2 60.6 28 6 1 7698 249 128 31 -101.6 50.2
ResNet-View 3+KSP 25.8 17.0 53.7 35 4 1 9874 286 177 52 -133.5 51.2
ResNet-View 3+KSP+ptrack 27.2 18.1 54.2 33 5 2 9208 402 150 46 -120.5 49.1
ResNet-View 4+KSP 20.5 12.6 54.4 14 5 1 4362 137 42 16 -255.3 60.5
ResNet-View 4+KSP+ptrack 22.1 13.9 54.4 13 2 5 3904 180 32 11 -222.1 60.3
ResNet-View 5+KSP 39.7 32.6 50.9 20 13 3 2560 598 117 79 5.8 54.2
ResNet-View 5+KSP+ptrack 41.7 35.0 51.7 18 12 6 2334 672 94 54 10.9 55.2
ResNet-View 6+KSP 26.6 17.5 55.4 34 4 1 10200 375 172 77 -136.1 52.2
ResNet-View 6+KSP+ptrack 29.4 19.9 56.4 30 8 1 8860 498 127 51 -108.4 52.8
ResNet-View 7+KSP 38.6 27.1 67.0 22 3 0 4488 171 72 28 -61.1 65.1
ResNet-View 7+KSP+ptrack 41.7 30.3 66.8 19 3 3 3791 253 49 21 -39.4 64.9

References

[1] S. Agarwal, K. Mierle, and Others. Ceres solver. http://ceres-solver.org.

[2] G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

[3] M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s mechanical turk: A new source of inexpensive, yet
high-quality, data? Perspectives on Psychological Science, 6(1):3–5, 2011. PMID: 26162106.

3https://cvlab.epfl.ch/data/wildtrack

4

http://ceres-solver.org

	Annotation process
	Annotations
	File formats
	Memory size

	Camera calibration
	Additional statistics
	Recommended splits of the WILDTRACK dataset
	Additional tracking benchmarks

