
Supplementary Material

Here we provide the model architecture and training de-
tails for our CEN models along with additional experimen-
tal results.

A. Model Parameters

For both datasets, the worker and context encoders are
fully connected neural networks consisting of two hidden
layers each with 200 neurons with ReLU activations. The
image encoder has one hidden layer with 200 units and out-
puts a K dimensional embedding vector. For the CELEBA
dataset, the embedding dimension K is set to four since we
provide the workers with four different attributes to cluster
on. For the RETINA dataset, we set K = 10 since we do
not know a priori how many different attributes the workers
will use. We jointly train the three encoders with a mini-
batch size of 100 using ADAM with ↵ = 0.001,�1 = 0.9,
and �2 = 0.999. We experimented with various learning
rates ↵ 2 {0.00001, 0.0001, 0.001, 0.01} and found that the
CEN performance was robust to these variations. The regu-
larization constants are set to �1 = 5E � 6 and �2 = 0.001.
We experimented with �1 2 {1E � 6, 5E � 6, 1E � 5, 5E �
5},�2 2 {0.0001, 0.0005, 0.001, 0.005, 0.01} and saw that
the prediction accuracy decreases when �1 > 5E � 6,�2 >
0.001, but relatively stable otherwise. Hence, we choose the
largest possible learning rate to reduce training time.

The positive margin, negative margin, and positive sim-
ilarity weight are each set to ⇠p = 1, ⇠n = 6 and � =

5, respectively. The prediction accuracy decreased when
⇠n/⇠p < 4. We experimented with varying positive similar-
ity weights � 2 {1, 2, ..., 10} and found that � = {4, 5, 6}
achieves similar best prediction accuracy when trained on
the full dataset. In Table S1 we show the impact of � on
the label prediction accuracy for both datasets. The opti-
mum value of � should be expected to change depending
on the variance in the level of detail workers cluster grids.
Models were trained for 20 epochs which we determined to
be sufficient for learning interpretable embeddings. When
utilizing all the data from 620 HITs, the training time was
on average 2.5 minutes for both datasets running on CPUs
(Macbook Pro 13-inch, Late 2012, 2.5 GHz Intel Core i5,
8GB RAM, Apple, CA, USA). Upon publication we will
make the code for our GUI and CEN model available.

Table S1. Impact of positive similarity weight � on label predic-
tion accuracy. � = 6 was used for all results presented in the main
paper.

� = 1 � = 4 � = 6 � = 8 � = 10

CELEBA 68.5% 69.8% 69.8% 69.3% 69.2%
RETINA 68.1% 69.3% 69.4% 69.1% 68.7%
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Figure S1. Visualizing the worker model. On the left we see
the predicted attribute activation vectors for each worker from the
CELEBA dataset. Attribute dimension labels were inferred from
worker annotations. Brighter colors indicate a stronger preference
for a given attribute. On the right we show the actual attributes
used by a set of representative workers inferred from their text
annotations. We can see that our worker attribute predictions are
consistent with the actual attributes used by the workers.

B. Interpretation of the Worker Model

We explore the learned attribute activation vectors aw for
each worker to examine if their prior biases were captured
by the worker encoder. The output attribute activation vec-
tors for each of the 94 workers are shown in Fig. S1(a) as
a stacked heatmap. On the right side of Fig. S1, we show
the distribution of attributes that four representative workers
have used over the course of performing ten HITs, inferred
from their text annotations. Fig. S1(a) shows that our model
predicts a high activation in aw3 for worker 24. In Fig. S1(b)
we can see that this worker consistently used the skin color
attribute for all ten HITs they performed. This indicates that
worker 24 had a strong prior bias towards grouping based
on skin color and was unaffected by the different contexts
formed by the grid. Note that it is highly unlikely that all ten
randomly generated grids shown to worker 24 highlighted
the skin color attribute. Fig. S1(c) shows that worker 35 re-
lied mainly on the expression attribute. Similarly for worker
45 we observe a strong bias towards the gender attribute as
the worker encoder outputs a high activation for aw1 . Worker
88 used a variety of attributes suggesting that they are more
sensitive to the context provided by the grid. We observe a
near uniform attribution activation vector for this worker.

C. Comparison of the Joint Embeddings

We compare the quality of the embeddings for the
CELEBA dataset produced by the CEN-mixture model with
those learned by baseline approaches that do not model con-
text. We project the four dimensional joint embedding vec-
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Figure S2. Comparing embedding quality. 2D t-SNE projections of the four dimensional joint embedding space for three embedding
models on the CELEBA dataset. Colors denote binarized ground truth categories for each of the four attributes: gender, expression, skin
color, and gaze direction. Dotted red boxes highlight attributes for which the CEN-mixture model produces more compact embeddings
compared to the baselines.
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Figure S3. Held-out Label Prediction on CELEBA. Prediction
accuracy on held out labels for the CELEBA dataset plotted against
the amount of available data during training.

tors xi down to two dimensions using t-SNE [22] and color
code each point according to its ground truth attribute. For
each attribute, the ground truth categories were binarized
for simplicity, i.e. smiling vs not smiling. In Fig. S2 we
show the low dimensional embeddings learned by the CEN-
mixture model, CEN-worker only model, and the Bayesian
Crowd Clustering baseline. The CEN-mixture model bet-
ter separates the ground truth categories in the embedding
space. This shows the positive impact of modeling context.
The worker encoder only model finds well separated em-
beddings along the gender and expression attribute (which
are relatively easy to distinguish) but does not perform well
on the skin color and gaze attributes (which are attributes
that workers more often disagree on). The Bayesian Crowd
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Figure S4. Varying the embedding dimension for the RETINA
dataset. We plot the average activations for each dimension of am

produced by the CEN-mixture model for three different values of
embedding dimension K. Red labels were inferred from the text
annotations.

Clustering baseline has difficulty separating the gender and
skin color attributes.

D. Heldout Label Predictions on CELEBA

Fig. S3(a) shows the pairwise prediction accuracy for
each model plotted against a varying number of training
samples for the CELEBA dataset. Standard Siamese Net-
works and Triplet Networks fail to capture the multiple at-
tributes used to cluster the images and have the lowest pre-
diction accuracy of 58.1% and 58.5%. The Bayesian Crowd
Clustering method slightly improves on that with an accu-
racy 59.1%. The worker only variant of our model achieves
a prediction accuracy of 62.1%. This is superior to Siamese
Networks and Bayesian Crowd Clustering but still fails to



capture the tendency of workers to shift their clustering cri-
terion based on the context highlighted by images in the
grid. The context only model variant performs substan-
tially better with a prediction accuracy of 65.2%. This indi-
cates that the context information is indeed influencing the
worker’s decisions. Finally, the CEN-mixture outperforms
all previous baselines with a prediction accuracy of 69.8%
(75.1% when trained on noiseless labels). The CSN model
with learned masks obtains the highest accuracy of 77.3%,
but it is important to note that this model was trained on
triplets pre-labeled with the true similarity attributes used
to cluster them. The CEN-mixture model achieves strong
predictive performance without any prior knowledge of the
similarity attributes.

E. Prior Number of Attributes

For the RETINA dataset, we do not know the number of
number of attributes the workers will use. Hence, we set
K = 10 which serves as our prior guess of an upperbound
on the number of attributes the workers are going to use.
Although the attribute vector dimension was set to K = 10,
we observed that four dimensions were consistently highly
activated across different values of K. In Fig. S4 we see
that the attribute dimensions we selected are the four most
highly activated dimensions of am for K = 10, 20, and 30.

Figure S5. Confusion plot for the BIRDS dataset.

F. Clustering Learned Embeddings

For the BIRDS dataset, we perform K-means cluster-
ing on the learned 4 dimensional embedding space with
K = 16 and compare the ground truth bird species of an
image with its assigned cluster. To quantify the agreement
between the ground truth species and the learned clusters,
we use the multi-class version of Matthew’s Correlation Co-
efficient (MCC) [8], where MCC = 1 indicates perfect pre-
diction, and a value between �1 and 0 denotes total dis-
agreement depending on the true distribution.
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The confusion plot in Fig. S5 reveals high correlation

(MCC = 0.914) between the ground truth species and
the learned clusters, suggesting that the CEN is able to
make fine-grained distinctions amongst bird species despite
highly noisy training data (25.6% for the BIRDS dataset).

To show that the learned embeddings are useful for fine-
grained classification tasks, we trained a CNN with the
cluster assignments as the image category labels and com-
pared the resulting accuracy when training on the ground
truth labels (900 images for training and 100 for testing).
Our ‘embedding label’ CNN resulted in a test accuracy of
68.1%, while the ground truth CNN produced an accuracy
of 76.2%.

G. Limitations

If workers do not have a diverse set of abilities it will
be challenging to learn embeddings that capture all subtle
variations in a given dataset. However, in our experiments
we observed that MTurkers discovered small distinctions in
challenging domains e.g. retina images and bird species
(see Fig. 7, 8)

Our context model assumes that the ordering of the im-
ages in the grid does not effect clustering behavior. In prac-
tice this may have some effect on the workers. To produce
disentangled attribute vectors we assume that a majority of
the grids are clustered along a single attribute. However,
from our experiments we observe that this only has to be
very weakly satisfied as many workers used a mixture of
attributes.


