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This supplementary document provides mathematical
details for the derivation of the lower bound of the scaling
parameter s (Equation 6 in the main paper), and the variable
scope of the cosine margin m (Equation 7 in the main

paper).

Proposition of the Scaling Parameter s

Given the normalized learned features x and unit weight
vectors W, we denote the total number of classes as C'
where C' > 1. Suppose that the learned features separately
lie on the surface of a hypersphere and center around the
corresponding weight vector. Let P,, denote the expected
minimum posterior probability of the class center (i.e., W).
The lower bound of s is formulated as follows:

Cc-1

s> c In

(C —1)Pw
1Py

Proof:
Let W; denote the i-th unit weight vector. Vi, we have:
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Because f(x) = e®? is a convex function, according to
Jensen’s inequality, we obtain:
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Besides, it is known that
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Thus, we have:
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Further simplification yields:
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The equality holds if and only if every WZ-TW]- is equal
(i # j), and ), W; = 0. Because at most K + 1 unit
vectors are able to satisfy this condition in the K-dimension
hyper-space, the equality holds only when C' < K + 1,
where K is the dimension of the learned features.

Proposition of the Cosine Margin m

Suppose that the weight vectors are uniformly dis-
tributed on a unit hypersphere. The variable scope of the
introduced cosine margin m is formulated as follows :
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where C'is the total number of training classes and K is the
dimension of the learned features.

Proof:

For K = 2, the weight vectors uniformly spread on a
unit circle. Hence, max(W;/W;) = cos 25. It follows 0 <
m < (1 — max(WTW;)) =1 — cos 2.

For K > 2, the inequality below holds:
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Therefore, max(WW;) >
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Similarly, the equality holds if and only if every W W;
is equal (i # j), and Zl W, = 0. As discussed above,
this is satisfied only if C' < K + 1. On this condition, the
distance between the vertexes of two arbitrary W should be
the same. In other words, they form a regular simplex such
as an equilateral triangle if C' = 3, or a regular tetrahedron
if C' = 4.

For the case of C > K + 1, the equality cannot be satis-
fied. In fact, it is unable to formulate the strict upper bound.
Hence, we obtain 0 < m <« % Because the number of
classes can be much larger than the feature dimension, the
equality cannot hold in practice.
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