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This supplementary document provides mathematical
details for the derivation of the lower bound of the scaling
parameter s (Equation 6 in the main paper), and the variable
scope of the cosine margin m (Equation 7 in the main
paper).

Proposition of the Scaling Parameter s

Given the normalized learned features x and unit weight
vectors W , we denote the total number of classes as C
where C > 1. Suppose that the learned features separately
lie on the surface of a hypersphere and center around the
corresponding weight vector. Let Pw denote the expected
minimum posterior probability of the class center (i.e., W ).
The lower bound of s is formulated as follows:
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Proof:
Let Wi denote the i-th unit weight vector. ∀i, we have:
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Because f(x) = es·x is a convex function, according to
Jensen’s inequality, we obtain:
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Besides, it is known that
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Thus, we have:
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Further simplification yields:
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The equality holds if and only if every WT
i Wj is equal

(i 6= j), and
∑
iWi = 0. Because at most K + 1 unit

vectors are able to satisfy this condition in the K-dimension
hyper-space, the equality holds only when C ≤ K + 1,
where K is the dimension of the learned features.

Proposition of the Cosine Margin m

Suppose that the weight vectors are uniformly dis-
tributed on a unit hypersphere. The variable scope of the
introduced cosine margin m is formulated as follows :
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where C is the total number of training classes and K is the
dimension of the learned features.

Proof:
For K = 2, the weight vectors uniformly spread on a

unit circle. Hence, max(WT
i Wj) = cos 2π

C . It follows 0 ≤
m ≤ (1−max(WT

i Wj)) = 1− cos 2π
C .

For K > 2, the inequality below holds:
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Therefore, max(WT
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C−1 , and we have 0 ≤
m ≤ (1−max(WT
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Similarly, the equality holds if and only if every WT
i Wj

is equal (i 6= j), and
∑
iWi = 0. As discussed above,

this is satisfied only if C ≤ K + 1. On this condition, the
distance between the vertexes of two arbitrary W should be
the same. In other words, they form a regular simplex such
as an equilateral triangle if C = 3, or a regular tetrahedron
if C = 4.

For the case of C > K + 1, the equality cannot be satis-
fied. In fact, it is unable to formulate the strict upper bound.
Hence, we obtain 0 ≤ m � C

C−1 . Because the number of
classes can be much larger than the feature dimension, the
equality cannot hold in practice.


