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1. Additional Classification Results
We performed an experiment to understand if there was

any relationship between real world animal size and pre-
diction accuracy. Using existing records for bird [4] and
mammal [2] body sizes we assigned a mass to each of the
classes in iNat2017 that overlapped with these datasets. For
a given species, mass will vary due to the life stage or gen-
der of the particular individual. Here, we simply take the
average value. This resulted in data for 795 species, from
the small Allen’s hummingbird (Selasphorus sasin) to the
large Humpback whale Megaptera novaeangliae. In Fig. 1
we can see that median accuracy decreases as the mass of
the species increases. These results are preliminary, but re-
inforce the observation that it can be challenging for hu-
mans to take good photographs of larger mammals. More
analysis of these failure cases may allow us to produce bet-
ter, species-specific, instructions for the photographers on
iNaturalist.
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Figure 1. Top one public test set accuracy per class for [6] for a
subset of 795 classes of birds and mammals binned according to
mass. The number of classes appears to the bottom right of each
box.

The IUCN Red List of Vulnerable Species monitors and
evaluates the extinction risk of thousands of species and
subspecies [1]. In Fig. 2 we plot the Red List status of
1,568 species from the iNat2017 dataset. We see that the
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Figure 2. Top one public test set accuracy for [6] for a subset of
1,568 species binned according to their IUCN Red List of Threat-
ened Species status [1]. The number of classes appears to the bot-
tom right of each box.

vast majority of the species are in the ‘Least Concern’ cate-
gory and that test accuracy decreases as the threatened sta-
tus increases. This can perhaps be explained by the reduced
number of images for these species in the dataset.

Finally, in Fig. 3 we examine the relationship between
the number of images and the validation accuracy. The me-
dian number of training images per class for our entire train-
ing set is 41. For this experiment, we capped the maximum
number of training images per class to 10, 20, 50, or all,
and trained a separate Inception V3 for each case. This cor-
responds to starting with 50,000 for the case of 10 images
per class and then doubling the total amount of training data
each time. For each species, we randomly selected the im-
ages up until the maximum amount. As noted in the main
paper, more attention is needed to improve performance in
the low data regime.

1.1. iNat2017 Competition Results

From April to mid July 2017, we ran a public challenge
on the machine learning competition platform Kaggle1 us-

1www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017
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Figure 3. As the maximum number of training images per class
increases so does the accuracy. However, we observe diminishing
returns as the number of images increases. Results are plotted on
the validation set for the Inception V3 network [7].

ing iNat2017. Similar to the classification tasks in [5], we
used the top five accuracy metric to rank competitors. We
used this metric as some species can only be disambiguated
with additional data provided by the observer, such as lo-
cation or date. Additionally, in a small number of cases
multiple species may appear in the same image (e.g. a bee
on a flower). Overall, there were 32 submissions and we
display the final results for the top five teams in Table 1.

The top performing entry from GMV consisted of an en-
semble of Inception V4 and Inception ResNet V2 networks
[6]. Each model was first initialized on the ImageNet-1K
dataset and then finetuned with the iNat2017 training set
along with 90% of the validation set, utilizing data augmen-
tation at training time. The remaining 10% of the valida-
tion set was used for evaluation. To compensate for the im-
balanced training data, the models were further fine-tuned
on the 90% subset of the validation data that has a more
balanced distribution. To address small object size in the
dataset, inference was performed on 560 × 560 resolution
images using twelve crops per image at test time.

The additional training data amounts to 15% of the orig-
inal training set, which along with the ensembling, multiple
test crops, and higher resolution account for the improved
81.58% top 1 public accuracy compared to our best per-
forming single model which achieved 68.53%.

Rank Team name Public Test Private Test
Top1 Top5 Top1 Top5

1 GMV 81.58 95.19 81.28 95.13
2 Terry 77.18 93.60 76.76 93.50
3 Not hotdog 77.04 93.13 76.56 93.01
4 UncleCat 77.64 93.06 77.44 92.97
5 DLUT VLG 76.75 93.04 76.19 92.96

Table 1. Final public challenge leaderboard results. ‘Rank’ indi-
cates the final position of the team out of 32 competitors. These
results are typically ensemble models, trained with higher input
resolution, with the validation set as additional training data.

2. Additional Detection Results

In Table 2 we investigate detector performance for the
2,854-class model across different bounding box sizes using
the size conventions of the COCO dataset [3]. As expected,
performance is directly correlated with size, where smaller
objects are more difficult to detect. However, examining
Table 3 we can see that total number of these small instances
is low for most super-classes.

APS APM APL ARS ARM ARL

Insecta 13.4 34.7 51.8 13.5 38.9 67.7
Aves 11.5 41.7 55.1 13.3 49.2 69.9
Reptilia 0.0 12.4 22.0 0.0 16.3 46.5
Mammalia 6.7 27.8 37.1 9.0 36.1 55.8
Amphibia 0.0 23.2 29.9 0.0 28.7 54.9
Mollusca 17.5 30.8 35.8 17.5 33.6 55.9
Animalia 24.0 22.7 37.1 26.7 28.2 52.0
Arachnida 16.2 32.9 46.5 16.2 38.5 61.6
Actinopterygii 5.0 16.3 36.1 5.0 17.9 51.1
Overall 11.0 34.7 46.7 12.5 40.7 63.7

Table 2. Super-class level Average Precision (AP) and Average
Recall (AR) with respect to object sizes. S, M and, L denote small
(area < 322), medium (322 ≤ area ≤ 962) and, large (area > 962)
objects. The AP for each super-class is calculated by averaging the
results for all species belonging to it. Best and worst performance
for each metric are marked by green and red, respectively.

Small Medium Large
Insecta 445 2432 16429
Aves 2375 8898 16239
Reptilia 32 400 5426
Mammalia 280 1068 2751
Amphibia 20 253 2172
Mollusca 74 466 1709
Animalia 72 414 1404
Arachnida 12 152 909
Actinopterygii 32 144 634

Table 3. The number of super-class instances at each bounding
box size in the validation set. While AP and AR is low for some
super-classes at a particular size (see Table 2), the actual number
of instances at that size may also be low.

References
[1] J. Baillie, C. Hilton-Taylor, and S. N. Stuart. 2004 IUCN red

list of threatened species: a global species assessment. IUCN,
2004. 1

[2] K. E. Jones, J. Bielby, M. Cardillo, S. A. Fritz, J. O’Dell,
C. D. L. Orme, K. Safi, W. Sechrest, E. H. Boakes, C. Car-
bone, et al. Pantheria: a species-level database of life history,
ecology, and geography of extant and recently extinct mam-
mals. Ecology, 2009. 1

[3] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-
mon objects in context. In ECCV, 2014. 2



[4] T. Lislevand, J. Figuerola, and T. Székely. Avian body sizes
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