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1. Additional details about the dataset
In this section, we present additional details on the

DVQA dataset statistics and how it was generated.

1.1. Data statistics

Table 1 extends Table 1 of the main paper on the distri-
bution of questions in the DVQA dataset.

1.2. Variations in question templates

The meaning of different entities in a chart is determined
by its title and labels. This allows us to introduce variations
in the questions by changing the title of the chart. For exam-
ple, for a generic title ‘Title’ and a generic label ‘Values’,
the base-question is: ‘What is the value of L?’. Depending
on the title of the chart, the same question can take follow-
ing forms:

1. Title: Accuracy of different algorithms, Label: Accu-
racy⇒What is the accuracy of the algorithm A?

2. Title: Most preferred objects, Label: Percentage of
people⇒What percentage of people prefer object O?

3. Title: Sales statistics of different items, Label: Units
sold⇒ How many units of the item I were sold?

Figure 1 provides an example on how questions can be
varied for the same chart by using a different title and dif-
ferent labels.

1.3. Data and visualization generation

In this section, we provide additional details on the
heuristics and methods used for generating question-answer
pairs.

We aim to design the DVQA dataset such that commonly
found visual and data patterns are also more commonly
encountered in the DVQA dataset. To achieve this, we
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downloaded a small sample of bar-charts from Google im-
age search and loosely based the distribution of our DVQA
dataset on the distribution of downloaded charts. However,
some types of chart elements such as logarithmic axes, neg-
ative values, etc. that do not occur frequently in the wild
are still very important to be studied. To incorporate these
in our dataset, we applied such chart elements to a small
proportion of the overall dataset. However, we made sure
that each of the possible variations was encountered at least
1000 times in the training set.

1.3.1 Distribution of visual styles

To incorporate charts with several appearances and styles in
our DVQA dataset, we introduced different types of varia-
tions in the charts. Some of them as listed below:

1. Variability in the number of bars and/or groups of bars.

2. Single-column vs. multi-column grouped charts.

3. Grouped bars vs. stacked bars. Stacked bars are fur-
ther divided into two types: 1) Additive stacking,
where bars represent individual values, and 2) Frac-
tional stacking, where each bar represents a fraction of
the whole.

4. Presence or absence of grid-lines.

5. Hatching and other types of textures.

6. Text label orientation.

7. A variety of colors, including monochrome styles.

8. Legends placed in a variety of common positions, in-
cluding legends that are separate from the chart.

9. Bar width and spacing.

10. Varying titles, labels, and legend entries.

11. Vertical vs. horizontal bar orientation.
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What is the value of label1 in
legend2?

What is the accuracy of the
algorithm algorithm1 in the
dataset dataset2?

How many units of the item
item1 was sold in the store
store2?

What percentage of people
prefer the object object1 in the
category category2?

Figure 1: An example showing that different question can be created by using different title and labels in the same chart.

Table 1: Statistics on different splits of dataset based on different question types.

Total
Questions

Unique
Answers

Top-2 Answers
(in percentage)

Structure
Train 313,842 10 no: 40.71, yes: 40.71
Test-Familiar 78,278 10 no: 41.14, yes: 41.14
Test-Novel 78,988 10 no: 41.00, yes: 41.00

Data
Train 742,896 1038 no: 7.55, yes: 7.55
Test-Familiar 185,356 1038 no: 7.44, yes: 7.44
Test-Novel 185,452 538 no: 7.51, yes: 7.51

Reasoning
Train 1,076,391 1076 yes: 8.29, no: 8.26
Test-Familiar 268,795 1075 no: 8.31, yes: 8.27
Test-Novel 268,788 577 no: 8.28, yes: 8.22

Overall
Train 2,325,316 1076 yes: 11.74, no: 11.73
Test-Familiar 580,557 1075 yes: 11.77, no: 11.75
Test-Novel 581,321 577 no: 11.80, yes: 11.77

In the wild, some styles are more common than others.
To reflect this in our DVQA dataset, less common styles,
e.g. hatched bars, are applied to only a small subset of
charts. However, every style-choice appears at least a 1000
times in the training set. In overall, 70% of the charts have
vertical bars and the remaining charts have horizontal bars.
Among multi-column bar-charts, 20% of the linear and nor-
malized percentage bar-charts are presented as stacked bar-
charts and the rest are presented as group bar-charts. In
legends we have used two styles that are commonly found
in the wild: 1) legend below the chart, and 2) legend to the
right of the chart. In 40% of the multi-column charts, leg-
ends are positioned outside the bounds of the main chart.
Finally, 20% of the charts are hatch-filled with a randomly
selected pattern out of six commonly used patterns (stripes,
dots, circles, cross-hatch, stars, and grid).

1.3.2 Distribution of data-types

Our DVQA dataset contains three major types of data
scales.

• Linear data. Bar values are chosen from 1 – 10, in an
increment of 1. When bars are not stacked, the axis is
clipped at 10. When bars are stacked, the maximum
value of the axis is automatically set by the height of
the tallest stack. For a small number of charts, values
are randomly negated or allowed to have missing val-
ues (i.e. value of zero which appears as a missing bar).
• Percentage data. Bar values are randomly chosen

from 10–100, in increments of 10. For a fraction of
multi-column group bar charts with percentage data,
we normalize the data in each group so that the val-
ues add up to 100, which is a common style. A small
fraction of bars can also have missing or zero value.
• Exponential data. Bar values are randomly chosen in

the range of 1 - 1010. The axis is logarithmic.
The majority (70%) of the data in the DVQA dataset is

of the linear type (1–10). Among these, 10% of the charts
are allowed to have negative. Then, 25% of the data contain
percentage scales (10–100), among which half are normal-
ized so that the percentages within each group add up to a
100%. For 10% of both linear and percentage data-type,



Figure 2: Examples of discarded visualizations due to the
bar-chart being smaller than 50% of the total image area.

bars are allowed to have missing (zero) values. The remain-
ing 5% of the data is exponential in nature ranging from 100

– 1010.

1.3.3 Ensuring proper size and fit

Final chart images are drawn such that all of them have the
same width and height of 448× 448 pixels. This was done
for the ease in processing and to ensure that the images do
not need to undergo stretching or aspect ratio change when
being processed using an existing CNN architecture. To at-
tain this, we need to ensure that all the elements in the chart
fit in the fixed image size. We have taken several steps to
ensure a proper fit. By default, the label texts are drawn
without rotation i.e. horizontally. During this, if any of the
texts overlap with each other, we rotate the text by either 45
or 90 degrees. Another issue is when the labels take up too
much space leaving too little space for the actual bar-charts,
which often makes them illegible. This is usually a problem
with styles that contain large texts and/or charts where leg-
end is presented on the side. To mitigate this, we discard the
image if the chart-area is less than half of the entire image-
area. Similarly, we also discard a chart if we cannot readjust
the labels to fit without overlap despite rotating them. Fig. 2
shows some examples of discarded charts due to poor fit.

1.3.4 Naming colors

For generating diverse colors, we make use of many of
the pre-defined styles that are available with the Matplotlib
package and also modify it with several new color schemes.
Matplotlib allows us to access the RBG face-color of each
drawn bar and legend entries from which we can obtain the
color of each of the element drawn in the image. However,
to ask questions referring to the color of a bar or a legend
entry, we need to be able to name it using natural language
(e.g. ‘What does the red color represent?). Moreover,
simple names such as ‘blue’ or ‘green’ alone may not suffice
to distinguish different colors in the chart. So, we employ

Table 2: Localization performance of MOM in terms of
IOU with the ground truth bounding box.

IOU with
ground truth

Percentage
of boxes

≥ 0.2 73.27
≥ 0.4 56.89
≥ 0.5 46.06
≥ 0.6 32.49
≥ 0.7 18.80
≥ 0.8 6.93
≥ 0.9 0.66
≥ 1.0 0.00

Table 3: Localization performance of MOM in terms of
the distance between the center of the predicted and ground
truth bounding box.

Distance from
the ground truth

Percentage
of boxes

≤ 1 pixels 0.14
≤ 8 pixels 8.48
≤ 16 pixels 25.77
≤ 32 pixels 52.89
≤ 64 pixels 74.21

the following heuristic to obtain a color name for a given
RGB value.

1. Start with a dictionary of all 138 colors from the CSS3
X11 named colors. Each of the color is accompa-
nied by its RGB value and its common name. The
color names contain names such as darkgreen, sky-
blue, navy, lavender, chocolate, and other commonly
used colors in addition to canonical color names such
as ‘blue’, ‘green’, or ‘red’.

2. Convert all the colors to CIE standard L*a*b* color
space which is designed to approximate human per-
ception of the color space.

3. Measure color distance between the L*a*b* color of
our chart-element and each of the color in the X11
color dictionary. For distance, we use the CIE 2000
delta E color difference measure which is designed to
measure human perceptual differences between colors.

4. Choose the color from the X11 colors which has the
lowest delta E value from the color of our chart-
element.

2. Analysis of MOM’s localization perfor-
mance

In the main paper, we observed that many predictions
made by MOM were close to the ground truth but not ex-
actly the same. This was also corroborated by taking into



Figure 3: Some examples showing correctly predicted bounding boxes predicted by our MOM model. Magenta shows the
ground truth and green shows the predicted bounding box.

Figure 4: Some examples showing incorrectly predicted bounding boxes predicted by our MOM model. Often the prediction
is off by only a few pixels, but the since the OCR requires total coverage, it results in an erroneous prediction. Magenta
shows the ground truth and green shows the predicted bounding box.

account the edit-distance between the predicted and ground
truth answer strings.

Here we study our hypothesis that this low accuracy is
due to poor localization of the predicted bounding boxes.
Fig. 3 shows some results from MOM for Test-Familiar split
of the dataset in which the bounding boxes are accurately
predicted. This shows that the bounding box prediction net-
work works with texts of different orientations and posi-
tions. However, Fig. 4 shows some examples where boxes
do not ‘snap’ neatly around the text area but are in the right
vicinity. Since the OCR subnetwork in MOM operates only
on the features extracted from the predicted bounding box, a
poor bounding box would also translate to a poor prediction.
To quantify this behavior we conduct two separate studies.

First, we measure the intersection over union (IOU) for
predicted and ground truth bounding boxes. Table 2 shows
the percentages of boxes that were accurately predicted for

various threshold values of IOU.

Next, we measure what percentage of the predicted
boxes are within a given distance from the ground truth
boxes. The distance is measured as the Euclidean dis-
tance between the center x,y co-ordinates for predicted and
ground-truth bounding boxes. Result presented in Table 3
shows that more than half of the predicted boxes are within
32 pixels from the ground truth boxes. Note here that the
image dimension is 448×448 pixels.

The above experiments show that while many of the pre-
dicted bounding boxes are ‘near’ the ground truth boxes,
they do not perfectly enclose the text. Therefore, if the pre-
dicted bounding boxes are localized better, which could be
achieved with additional fine-tuning of the predicted bound-
ing boxes, we can expect a considerable increase in MOM’s
accuracy on chart-specific answers.



3. Additional examples
In this section, we present additional examples to illus-

trate the performance of different algorithms for different
types of questions. Fig. 5 shows some example figures with
question-answer results for different algorithms and Fig. 6
shows some interesting failure cases.

As shown in Fig. 5, SAN-VQA, MOM, and SANDY all
perform with high accuracy across different styles for struc-
ture understanding questions. This is unsurprising since all
the models use the SAN architecture for answering these
questions. However, despite the presence of answer-words
in the training set (test-familiar split) SAN is incapable of
answering questions with chart-specific answers; it always
produces the same answer regardless of the question being
asked. In comparison, MOM shows some success in de-
coding the chart-specific answers. However, as explained
earlier in section 2, the accuracy of MOM for chart-specific
answers also depends on the accuracy of the bounding box
prediction due to which its predictions were close but not
exact for many questions. As discussed in section 2, al-
though the exact localization of the bounding box was poor,
the majority of the predicted bounding boxes were in the
vincinity of the ground truth bounding boxes. We believe
with additional fine-tuning, e.g. regressing for a more exact
bounding box based on the features surrounding the initial
prediction, could improve the model’s performance signif-
icantly. Finally, SANDY shows a remarkable success in
predicting the chart-specific answers. SANDY’s dynamic
dictionary converts the task of predicting the answer to pre-
dicting the position of the text in the image, making it easier
to answer. Once the position is predicted, there are no ad-
ditional sources of error for SANDY making it less error
prone in general.

Similarly, both SAN and MOM are incapable of cor-
rectly parsing the questions with chart-specific labels in
them. In comparision, SANDY can use the dynamic lo-
cal dictionary to correctly parse the chart-specific labels
showing an improved performance for these questions e.g.
Fig. 5c, 6c, and 6e.

In Fig. 6, we study some failure cases to better under-
stand the nature of the errors made by current algorithms.
One of the most commonly encountered errors for the algo-
rithms that we tested is the error in predicting exact value of
the data. Often, predicting these values involve extracting
exact measurement and performing arithmetic operations
across different values. The results show that the models
are able to perform some measurement; the models predict
values that are close to the correct answer, e.g. predicting
smaller values when the bars have smaller height (Fig. 6d)
and predicting larger values when the bars are tall (Fig. 6f).
In addition, the models are able to make predictions in the
accurate data scale e.g. For Fig. 6d, the prediction for the
value is in percentage scale (0–100) and for Fig. 6e, the

prediction is in linear scale (0–10).
The next class of the commonly encountered errors is the

prediction of chart-specific answers. We have already estab-
lished that the SAN-VQA model completely fails to answer
questions with chart-specific answers, which is demon-
strated in all the examples in Fig. 5 and 6. Our MOM model
also makes errors for several examples as shown in Fig. 6.
The errors occur in decoding the OCR (Fig. 6a), predicting
the right box (Fig. 6f) or both (Fig. 6d). While our SANDY
model shows vastly increased accuracy for these answers, it
can make occasional errors for these questions (Fig. 6d).



Example question-answer pairs for different models

(a)
Q: What is the label of the second bar from

the left in each group?
SAN: closet 7 MOM: guest 3 SANDY:

guest 3

Q: Is each bar a single solid color without
patterns?

SAN: yes 3 MOM: yes 3 SANDY: yes 3

(b)
Q: How many items sold less than 6 units in

at least one store?
SAN: four 3 MOM: four 3 SANDY:

four3
Q: Does the chart contain stacked bars?

SAN: yes 3 MOM: yes 3 SANDY: yes 3

(c)
Q: What is the highest accuracy reported in

the whole chart?
SAN: 7 3 MOM: 7 3 SANDY: 7 3

Q: Is the accuracy of the algorithm leg in
the dataset suite smaller than the accuracy

of the algorithm chest in the dataset sample?
SAN: no 7 MOM: no 7 SANDY: yes 3

(d)
Q: Which bar has the largest value?

SAN: closet 7 MOM: aspect 3 SANDY:
aspect 3

Q: What is the value of the largest bar?
SAN: 109 3 MOM: 109 3 SANDY: 1093

(e)
Q: How many algorithms have accuracy

lower than 3 in at least one dataset?
SAN: zero 3 MOM: zero 3 SANDY: zero

3

Q: Which algorithm has highest accuracy
for any dataset?

SAN: closet 7 MOM: girl 3 SANDY:
girl3

(f)
Q: Which object is preferred by the most
number of people summed across all the

categories?
SAN: closet 7 MOM: site 3 SANDY:

site3

Q: Are the bars horizontal?
SAN: yes 3 MOM: yes 3 SANDY: yes 3

Figure 5: Some example question-answer pair for different algorithms on the Test-Familiar split of the dataset. The algorithms
show success in variety of questions and visualizations. However, the SAN model is utterly incapable of predicting chart-
specific answers.



Some interesting failure cases

(a)
Q: What is the label of the third bar from

the bottom?
SAN: closet 7 MOM: whidkw 7 SANDY:

widow 3

(b)
Q: Which algorithm has the largest

accuracy summed across all the datasets?
SAN: closet 7 MOM: lack 7 SANDY:

vector 3

(c)
Q: Is the value of output smaller than

demand?
SAN: no 7 MOM: no 7 SANDY: yes 3

(d)
Q: Which algorithm has the smallest

accuracy summed across all the datasets?
SAN: closet 7 MOM: fil 7 SANDY: editor

7

Q: What is the highest accuracy reported in
the whole chart?

SAN: 60 7 MOM: 60 7 SANDY: 60 7

(e)
Q: How many total people preferred the
object terror across all the categories?

SAN: 10 7 MOM: 10 7 SANDY: 10 7

Q: How many people prefer the object
terror in the category roll?

SAN: 1 7 MOM: 1 7 SANDY: 9 3

(f)
Q: What is the highest accuracy reported in

the whole chart?
SAN: 90 3 MOM: 90 3 SANDY: 80 7

Q: Which algorithm has the smallest
accuracy summed across all the datasets?
SAN: closet 7 MOM: record 3 SANDY:

park 7

Figure 6: Some failure cases for different algorithms on the Test-Familiar split of the dataset.


