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Summary
This supplementary material contains additional infor-

mation that could not be included in the main paper due to
space limitation:

• Details of efficient bound computation (the relaxed
problem and its relationship with the original problem)
(Sec. 1)
• Additional experimental results on real-world dataset

(Sec. 2)
• Limitations and future work (Sec. 3)

1. Details of Efficient Bound Computation
To speed up the bound computations for large-scale sur-

face normal datasets, we suggest relaxing the inlier region
(see Sec. 5.4 in the main paper), inspired by the work of
Joo et al. [2]. Their method was originally developed in the
context of Manhattan frame, but we can adapt it for Atlanta
frame using our proposed bound derivations (Sec. 5.2.2
in the main paper) and our Atlanta frame parametriza-
tion (Sec. 4.1 in the main paper). We exploit the rectangular
bound on the efficient search space (2D EGI)1 to solve the
relaxed problem of Atlanta frame estimation. In this sec-
tion, we clarify the definition of the relaxed problem and
discuss the relationship between the original problem and
the relaxed one.

1.1. Relaxed Problem

Let us first recall the original problem formulation (sys-
tem (3) in the main paper):

argmax
{y},R∈SO(3),{α}

∑N

i=1

∑M+1

j=1
yij (1a)

s.t. yijd(ni,vj) ≤ yijτ, ∀i, j (1b)

yij ∈ {0, 1}, ∀i, j. (1c)

1Extended Gaussian image (EGI) is a kind of surface normal histogram
on azimuth and elevation coordinate of the sphere. The EGI on the 3D
sphere can be directly transferred to the 2D EGI (a.k.a. equirectangular
projection).
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Figure 1: Illustration of bounds (inlier region) on 3D and 2D
spaces. Left: Inlier region of the original constraint on the
sphere. Right: Inlier region of the original constraint (solid
line) and the relaxed (axis aligned) constraint (dashed line)
in the 2D elevation-azimuth space.

We relax the constraints of the original problem as axis-
aligned constraints:

argmax
{y},R∈SO(3),{α}

∑N

i=1

∑M+1

j=1
yij (2a)

s.t. yijφ(ni,vj) ≤ yijτel, (2b)

yijθ(ni,vj) ≤ yijτaz, (2c)

yij ∈ {0, 1}, ∀i, j, (2d)

where φ(·, ·) and θ(·, ·) are the angular distances between
two vectors along the elevation and the azimuth axes of 2D
EGI, respectively. τel and τaz are the inlier thresholds for
each axis, which are defined by the 3D to 2D EGI mapping.
Thanks to the closed-form mapping of 3D to 2D EGI, we
can pre-calculate the thresholds τel and τaz, given the origi-
nal inlier threshold τ . The visualization of the original and
relaxed inlier regions is available in Fig. 1.

With this relaxation, the circular inlier region of the orig-
inal problem (geodesic distance up to τ on the sphere) is re-
laxed to a circumscribed rectangular region along azimuth
and elevation axes, as shown in Fig. 1. It allows us to
leverage the standard integral image techniques on a 2D do-
main with azimuth and elevation axes rather than 3D sphere.
Therefore we can compute, in a constant time, the lower and
upper bounds of the number of inliers given a cube of At-
lanta directions (systems (8) and (9) in the main paper).
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1.2. Relationship with the Original Problem

We now discuss the relationship between the original and
relaxed problems (i.e. systems (1) and (2)). Note that this
discussion is just for the sake of intellectual curiosity: it
is not used in the proposed approach, implementation and
experiments.

For convenience, we first derive a natural extension of
distance function in the underlying metric space. Then, we
introduce the Hausdorff distance, which measures the dis-
tance between two sets and is used for quantifying solutions
obtained from our relaxed problem.

We denote d(a, b) a distance function between two ele-
ments a and b. Similarly, we write d(a,B) = infb∈B d(a, b)
a distance between an element a and a set B. Given a dis-
tance function d, let X and Y be two non-empty subsets
of a metric space. The Hausdorff distance, i.e. the distance
between two sets, is defined as

Hd(X ,Y) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

(3)
The idea of comparing the solutions of the original and

relaxed problems is to define distances hierarchically as fol-
lows. Using the Hausdorff distance, we measure a distance
between two Atlanta frames, and also a distance between
two sets of solutions obtained from different problems. An
Atlanta frame can be represented as a set of M unit vector
directions V = {v1, . . . ,vM}. The distance dAF (V,V ′)
between two Atlanta frames can be computed by Hausdorff
distance with geodesic distance as

dAF (V,V ′) = Hdg (V,V ′), (4)

where dg denotes the geodesic distance between two unit
vectors v and v′ as

dg(v,v
′) = arccos(v>v′). (5)

Given fixed measurements (i.e. input line or surface nor-
mals), let S be the set of solutions obtained by a system.
For example, let So(τ) denotes the set of Atlanta frame so-
lutions obtained by the original system (1) with the inlier
threshold τ . Then, the comparison between two solution
sets can be made by Hausdorff distance as HdAF

(S,S′).
Then, we have the following relationship.

Lemma 1. Given any fixed input measurements, let So(τ)
and Sr(τ) respectively be the sets of the globally op-
timal solutions obtained by solving the original prob-
lem (1) and its relaxed version (2), with the inlier thresh-
old τ . For ε>0, suppose there exists So(τ#) such that
HdAF

(Sr(τ),So(τ#)) ≤ ε, i.e., ε-net, then

∀V ∈ Sr(τ),
∣∣∣dAF (V, So(τ))−HdAF (So(τ), So(τ

#))
∣∣∣≤ε. (6)

Proof. We first introduce the properties of the Hausdorff
distance H(·, ·) [3].

1. If both X and Y sets are bounded, then H(X ,Y) is
guaranteed to be finite.

2. H(X ,Y) = 0 iff X and Y have the same closure.

3. (Triangle inequality) For every point x of a met-
ric space and any non-empty sets Y , Z of
the same space, d(x,Y)≤d(x,Z)+H(Y,Z), where
d(x,Y)= infy∈Y d(x, y)

The third property, triangle inequality, holds due to the
metric property of the Hausdorff distance. The overall proof
is based on this triangle inequality.

We can equivalently write the inequality (6) as follows:

HdAF
(So(τ),So(τ#))−ε ≤ dAF (V,So(τ))

≤ HdAF
(So(τ),So(τ#))+ε.

(7)
Let’s first prove the right-hand side of (7). Starting from

the triangle inequality, we have

dAF (V, So(τ)) ≤ dAF (V, So(τ
#)) +HdAF (So(τ), So(τ

#))

≤ HdAF (Sr(τ), So(τ
#)) +HdAF (So(τ), So(τ

#))

≤ ε+HdAF (So(τ), So(τ
#)),

(8)
where the relationship from the first line to the second line
comes from the fact that ∀x, d(x, Y )≤HdAF

(X,Y ), by def-
inition in (3), and the last line is derived by the ε-net as-
sumption.

The left-hand side of (7) can be derived from the reverse
triangle inequality, which holds for any metric distance.∣∣∣dAF (V, So(τ

#))−HdAF (So(τ), So(τ
#))

∣∣∣ ≤ dAF (V, So(τ)).

(9)
This can be equivalently expressed as

−dAF (V, So(τ)) ≤ dAF (V, So(τ
#))−HdAF (So(τ), So(τ

#))

≤ dAF (V, So(τ)).
(10)

We use the inequality between the left-hand side and the
middle term.

−dAF (V, So(τ)) ≤ dAF (V, So(τ
#))−HdAF (So(τ), So(τ

#))

≤ HdAF (Sr(τ), So(τ
#))−HdAF (So(τ), So(τ

#))

≤ ε−HdAF (So(τ), So(τ
#))

(11)
By inverting the sign, we have

HdAF
(So(τ),So(τ#))− ε ≤ dAF (V,So(τ)). (12)

By combining Eqs. (8) and (12), we conclude the proof.
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Figure 2: Illustration of the 4-line RANSAC procedure de-
signed for estimating 3 Atlanta directions (left) and example
of generalization, 5-line RANSAC for 4 Atlanta directions
(right).

Remark Lemma 1 shows that the quality of solutions ob-
tained from the relaxed problem can be quantified by two
solutions obtained by the original problem with different
inlier thresholds.

2. Experiments
In this section, we will present the details of the gener-

alization of the 4-line RANSAC and show supplementary
experimental results on the real-world dataset.

2.1. 4-line RANSAC and its Generalization

In Sec. 6.1 of the main paper, we presented the 4-line
RANSAC to detect 3 Atlanta directions. For completeness,
we now explain its generalization.

The procedure of 4-line RANSAC is shown in Fig. 2. At
each RANSAC iteration, four lines are randomly selected.
The idea is to first hypothesize the two horizontal directions,
which defines the horizon and thus the vertical direction.
The first two lines (shown in red in Fig. 2) intersect at a hor-
izontal direction vh1 (and its antipodal point). The last two
lines (shown in green) intersect at a horizontal direction vh2

(and its antipodal point). The cross product of vh1
and vh2

provides the vertical direction vv (shown in purple), which
also defines the horizon.

For the generalization of 4-line RANSAC, we can sim-
ply define additional horizontal directions vhm

by comput-
ing the intersection point between additional lines and the
horizon. For example with 5-line RANSAC, we randomly
select 5 lines, and we can find 1 vertical and 3 horizon-
tal directions: we first can generate 3 Atlanta directions
(vv,vh1

,vh2
) using the first four lines by 4-line RANSAC,

and then define one more horizontal direction vh3
by com-

puting the intersection between the horizon and the fifth line
(in blue), as shown in Fig. 2-right.

2.2. Additional Experimental Results

We now show additional experimental results on real-
world datasets that we could not include in the main paper
due to space limitations.
York urban database Figs. 4 and 5 show our results with
3 Atlanta directions (M = 2) on 60 randomly-selected im-

Figure 3: Examples of scenes and buildings that do not ver-
ify the Atlanta world constraint.

ages from the York urban database. It shows our method
can be applied to images with different characteristics such
indoor/outdoor urban scenes, low/high number of lines, and
different numbers of dominant directions (2 and 3). When
the target number of directions (e.g. 3) is less than the actual
number of directions in the image (e.g. 2), then the extra di-
rections are simply clustered to no lines.

3. Limitations and Future Work
Our approach is designed for Atlanta worlds. There-

fore it is not appropriate for scenes and buildings that do
not verify the Atlanta world constraint, such as shown in
Fig. 3. Similarly, our automatic upright adjustment of VR
images requires lines in Atlanta world, so it cannot deal
with unstructured landscape pictures, such as the mountain
panorama shown in Fig. 3-bottom.

Our approach for line inputs assumes the input images
are intrinsically calibrated. An interesting direction for fu-
ture work would be to estimate the intrinsic parameters of
the images, especially the focal length. For example, the
goal would be to compute the Atlanta world VPs and the
focal length, in such a way that the number of clustered
lines is maximized.
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Figure 4: Results of our approach on the York urban database [1]: input lines (odd columns) and our clustering result (even
columns).



Figure 5: Same caption as Figure 4.


