
Supplementary Material

Generate To Adapt: Aligning Domains using Generative Adversarial Networks

1. Network Architectures and Hyperparame-
ters

This section describes the details of the network archi-
tectures used in our experiments. A detailed description of
all the architectures can be found in Fig. 1

Digits experiments For SV HN → MNIST experi-
ment, we used DigF1, DigC1, DigG and DigD architec-
tures mentioned in Fig. 1 as our F ,C,G andD networks re-
spectively. For all other digit experiments, we use DigF2,
DigC2, DigG and DigD. All models were trained from
scratch and were initialized using random Gaussian noise
with standard deviation 0.01. We used Adam solver with
base learning rate of 0.0005 and momentum 0.8 to train our
models. The cost coefficients α and β are set as 0.1 and
0.03 respectively based on validation splits. We resize all
input images to 32 × 32 and scale their values to the range
[0, 1].

OFFICE experiments For OFFICE experiments, we
used OfcC, OsG and OsD architectures mentioned in
Fig. 1 as our C, G and D networks respectively. The F net-
work is initialized with pretrained Resnet50 model trained
on ImageNet, the last layer of which is removed and the re-
sulting 2048 dimensional vector is used as the feature em-
bedding. We use Adam solver for optimization with a base
learning rate of 0.0004 and momentum 0.7 for all the exper-
iments. The dimension of the random noise vector is set as
128 and the cost coefficient α and β are both set as 0.01.

Synthetic to Real experiments Similar to OFFICE ex-
periments, we used SynC, OsG and OsD architectures
mentioned in Fig. 1 as our C, G and D networks respec-
tively. We remove the last layer of the pretrained VGG16
model trained on Imagenet, and initialize it as our F net-
work. The resulting 4096 dimensional vector is used as the
feature embedding. For all the experiments, we used the
same hyperparameter settings as those used in the Office
experiments.

DigF1
DigF2

DigC1 DigC2

DigG DigD

OsG OsD

OfC SynC

OfF SynF

Figure 1: Network Architectures. Legend: BN - Batch Nor-
malization, ConvT - Transposed convolution layer

2. Noise Analysis

As described in our approach in the main paper, the input
to the generator network G is xg = [F (x), z, l], a concate-
nated version of the feature embedding, noise vector z ∈ Rd

sampled from N (0, 1) and l, the one-hot encoding of the
class label. In this section, we perform a study of how
the dimensionality of the noise vector z affects the trans-

1



Figure 2: Effect of the noise dimension on classification
accuracy for the transfer task SVHN→MNIST

fer accuracy. In figure 2, the transfer accuracy for the task
SVHN → MNIST is plotted against the number of train-
ing epochs. The dimensionality d is varied over the set:
{32, 64, 128, 256, 512}. The following observations can be
made: (1) The approach is not overly sensitive to d, given
that all values obtain an average performance of 90.5% or
more. (2) The values of dimensionality that is too low (32)
or too high (512) result in slightly suboptimal performance.

3. Generation visualization
In Fig. 3, we show some sample images generated by

the G network in two experimental settings - SV HN →
MNIST and Office A → W . The top set of images show
the generations when the input to the system are the sam-
ples taken from the source dataset, while the bottom set are
the generations when inputs are the images from the target
dataset. We make the following observations: (1) The qual-
ity of image generation is better in the digits experiments
compared to the Office experiments (2) The generator is
able to produce source-like images for both the source and
target inputs in a class-consistent manner (3) There is mode
collapse in the generations produced in the Office experi-
ments.

The difficulty of GANs in generating realistic images in
the Office and Synthetic to real datasets makes it signifi-
cantly hard for the methods that use cross-domain image
generation as a data augmentation step. Since we rely on
the image generation as a mode for deriving rich gradients
to the feature extraction network, our method works well
even in the presence of severe mode collapse and poor gen-
eration quality.

4. Synthetic to Real adaptation with ResNet
This experiment is an extension to the Synthetic to Real

experiments in the main paper. Instead of initializing F

Figure 3: Example of images sampled fromG after training.
In each set, the images on the left indicate the source images
and the images on the right indicate the generated images

Table 1: Accuracy (mean± std%) values over five indepen-
dent runs on the Synthetic to real dataset. The best numbers
are indicated in bold.

Method CAD→ PASCAL

ResNet50 - Source only 30.2 ± 0.6
RevGrad 41.7 ± 1.3

Ours 46.5 ± 0.9

network with the pretrained VGG16 model, we initialize
it with pretrained Resnet-50 model trained on ImageNet as
done in the OFFICE experiments. The results of the ex-
periments are presented in Table. 1. We observe that the
model trained only on source domain achieves 30.2% per-
formance, which is 7.9% less than the VGG16 baseline
performance mentioned in the main paper. However, our
method achieves a performance of 46.5% (which is 16.3%
above the baseline) and outperforms other compared ap-
proaches.


