
Deep Diffeomorphic Transformer Networks

Nicki Skafte Detlefsen
Technical University of Denmark

nsde@dtu.dk

Oren Freifeld
Ben-Gurion University
orenfr@cs.bgu.ac.il

Søren Hauberg
Technical University of Denmark

sohau@dtu.dk

Abstract

This document contains supplementary material for the CVPR 2018 paper “Deep Diffeomophic Transformer Networks“.
We use the same notation as the in the paper [2]. The current documents contains the following sections: 1. Implementation
details; 2. Tessellation size; 3. Analytic matrix exponential for 3x3 matrices; 4. Transformed samples.

1. Implementation details
In the following section we present pseudocode for computing and implementing the proposed ST-CPAB layer, together

with the computational issues associated with implementing it in the TensorFlow framework.

As stated in the paper, incorporating the proposed layer into existing network architectures is simple, and requires merely
two lines of code. The first line sets up B (the basis for the space of the CPA velocity fields); this is done using Algorithm 1
below [2]. This computation is done only once.

Algorithm 1 Constructing the basis B. The code involves finding all shared vertices V between cells in the tessellation,
constructing the constrain matrix L that encodes continuity constrains and then finally finding the basis B as the null space
of L; see [2] for more details.
Require: Number of the square tessellation cells in the x,y directions: ncx, ncy (the final number of squares will be 4 ×

ncx× ncy as each square is divided into 4 triangles).
1: V = find tessellation vertices(ncx, ncy)
2: L = create continuity constraints(V ) // encodes the continuity constraints, which are linear (since the tessellation’s cells

are convex polytopes [3]) as a matrix
3: B = null(L) // Finds the null space of the matrix L
4: returnB

Most of the computation time of the ST-CPAB layer is spent on evaluating the CPAB transformations; i.e., transforming
the grid points G (see the discussion on the ST-layer in the paper). Pseudocode for this is given in Algorithm 2. Note
Algorithm 2 is a simplification of the corresponding algorithm from Freifeld et al. [2]. In the original implementation there
is an extra line after line 9, that checks whether idxt equals to idxt−1; i.e., have we moved from one cell to another. If so,
Freifeld et al. called a generic ODE solver to get a better estimate of the cell boundary. By empirical testing, however, we
found that the numerical error introduced by removing this extra check is negligible, and in the end speeds up the computation
since we avoid thread divergence.

1



Algorithm 2 CPAB transformer. The code integrates the velocity field vθ, by iteratively applying affine cell-dependent
transformations Ti that are computed from the fixed basisB and the parameter θ. See [2, 3] for more details.

Require: Number of tessellation cells in the x,y directions: ncx, ncy, BasisB, Grid G = {x1,x2, ...,xn}, Parametrization
θ.

1: Ã = Bθ
2: A = vec−1(Ã)
3: for i = 1:(4*ncx*ncy) do in parallel
4: Ti = expm(Ai)

5: for xi ∈ G do in parallel
6: x0,i = xi

7: for t = 1:50 do
8: idxt−1 = findcellidx(xt−1,i , ncx, ncy)
9: xt,i = Tidxt−1

xt−1,i

10: Gtrans = {x50,1,x50,2, ...,x50,n}
11: return Gtrans

Algorithm 2 is in principle simple to compute: just iteratively find the cell index of the points and apply the matrix
belonging to that cell. However, it is worth mentioning that this simple code does not suit the computational paradigm by
TensorFlow at the moment, due to two reasons:

1. Cell indexing: The findcellidx-function mostly consists of simple modulus and division operations. However, because
the transformation needs to extend beyond the image domain, we need to check 5 different cases (point to the right,
left, above, below our domain or inside domain). Even though each case consists of only a few simple operations, in
a computational-graph paradigm we need to evaluate all conditions for all points because we cannot know, a-priori,
which cell we are in. Thus, a naive TensorFlow implementation ends up performing a number of operations which is
approximately 5x the number that is needed.

2. Graph construction: To evaluate the transformation, we iteratively apply the set of transformations Ti 50 times in a
static way to all points. Thus, in pure TensorFlow, a single for-loop creates 50 nodes in the computational graph, which
heavily decreases performance. Although TensorFlow’s API supports looped operations (tf.while loop(...)) it does not
appear to be optimized for such use cases at the current moment.

In general we found that a pure TensorFlow implementation of Algorithm 2 is 11 times slower than our CUDA implemen-
tation for forward passes and 5 times slower for backward passes.

With the implementation of the CPAB transformer, it is easy to define the CPAB-layer, see Algorithm 3. As in any other
ST-layer, this step is associated with a grid generator and an interpolation method (bilinear in most cases).

Algorithm 3 CPAB layer. The final CPAB layer is a concatenation of the CPAB transformer in Algorithm 2 with a grid
generator (in our case a simple meshgrid of points) and a bilinear interpolation kernel.

Require: Batch of images im, Batch of parameters θ, Output size of each interpolated image (outw, outh), BasisB.
1: G = meshgrid(outw, outh)
2: Gtrans = CPAB transformer(G, θ,B)
3: imout = interpolate(im, Gtrans, (outw, outh))
4: return imout

Algorithm 3 describes the forward pass of the operations. For the backwards pass, we compute the gradient of the CPAB
transformers w.r.t. θ using our CUDA implementation1 while TensorFlow’s auto differentiation (using the chain rule) takes
care of the rest. We remark that in comparison with the finite-difference approach (which only approximates ∂T θ(x)/∂θ),
our implementation is not only more accurate but also considerably faster. For details about how the gradient of the CPAB
transformations w.r.t. θ is computed we refer to [1].

1As mentioned in the paper, the CPAB derivative, ∂Tθ(x)/∂θ, whose mathematical details can be found in [1], has no closed-form expression. Rather,
it is given only via the solution of a system of coupled integral equations [3]. As such, TensorFlows auto-differentiation is inapplicable for computing it.



Finally, in comparison to the implementation from [2, 3], we added two additional parallelism levels; while in [2, 3]
parallelization was done only over different pixels, here we also parallelize over different images as well as the d components
of the CPAB gradient.



2. Tessellation size
In the paper we do not go into details about the hyperparameters nx, ny , that determine the tessellation’s size, and thereby

dim(θ). For completeness, in Table 1 we report an experiment on the LFW(restricted) dataset, where we experimented with
different tessellations.

Tessellation 1× 1 2× 2 3× 3 4× 4 5× 5
d = dim(θ) 10 20 34 58 90
Time [s] 3456 5691 8259 13374 19733
Accuracy [%] 82.3 86.8 89.7 89.3 88.2

Table 1: Classification accuracy on the LFW (restricted) dataset for different tessellation sizes.

In retrospect, the results Table 1 show that we could have used a smaller tessellation size, with increase in performance
(for this particular dataset) and a decrease in computational time.

dim(θ)
Parameter
space

Cont. Cont. +
ZB

Cont. +
VP

Cont. +
ZB + VP

P2 96 20 14 10 3
P4 386 58 32 15 10

Table 2: The initial parameter space of two tessellations, P2 = [2, 2] and P4 = [4, 4], and after enforcing different sets of
constrains. Evidently from the table, we achieve a highly-flexible transformation with a low-dimensional θ. Legend: Cont =
Continuity, ZB = Zero Boundary, VP = Volume preservation.

Worth nothing about our method, is the ability of incorporating other constrains than continuity into the model. In [2]
and its supplementary material Freifeldet al. go into much more detail; Table 2 shows the parametrization size dim(θ) for
different choices of tessellation and constrain combinations.

3. Analytic matrix exponential for 3x3 matrices
As evident from algorithm 2, our algorithm requires the evaluation of the matrix exponential. Thus, we have here derived

the analytical expression for the matrix exponential for matrices with the following special form

A =

a b c
d e f
0 0 0


Define y = a2 − 2 · a · e+ 4 · b · d+ e2 and x =

√
y. The resulting matrix exponential is given by

expm(A) =

ea eb ec
ed ee ef
0 0 1


where the entries are determined by the value of y:

ea =



−(4 · ((a− e) · sinx+ cosx · x)) · (a · e− b · d) · expea · nomc if y < 0

−2 · (a · e− b · d) · ((a− e− x) · expeam− (a− e+ x) · expeap) · nomr if y > 0

2 · (a− e+ 2) · (a · e− b · d) · expea/ea2 if y = 0



eb =



−8 · b · (a · e− b · d) · sinx · expea · nomc if y < 0

−4 · b · (expeam− expeap) · (a · e− b · d) · nomr if y > 0

4 · b · (a · e− b · d) · expea/ea2 if y = 0

ec =



−4 · (((−c · e2 + (a · c+ b · f) · e+ b · (a · f − 2 · c · d)) · sinx− ...
cosx · x · (b · f − c · e)) · expea+ (b · f − c · e) · x) · nomc if y < 0

(((4 · c · d− 2 · f · eap) · b− 2 · c · e · (a− e− x)) · expeam+ ...

((−4 · c · d+ 2 · f · eam) · b+ 2 · c · e · (a− e+ x)) · expeap+ 4 · (b · f − c · e) · x) · nomr if y > 0

((−2 · c · e2 + (2 · b · f + 2 · c · (a+ 2)) · e+ 2 · b · (−2 · c · d+ f · (a− 2))) · expea+ ...

4 · b · f − 4 · c · e)/ea2 if y = 0

ed =



−8 · d · (a · e− b · d) · sinx · expea · nomc if y < 0

−4 · d · (expeam− expeap) · (a · e− b · d) · nomr if y > 0

4 · d · (a · e− b · d) · expea/ea2 if y = 0

ee =



4 · ((a− e) · sinx− cosx · x) · (a · e− b · d) · expea · nomc if y < 0

2 · (a · e− b · d) · ((a− e+ x) · expeam− (a− e− x) · expeap) · nomr if y > 0

−(2 · (a− e− 2)) · (a · e− b · d) · expea/ea2 if y = 0

ef =



4 · (((a2 · f + (−c · d− e · f) · a+ d · (2 · b · f − c · e)) · sinx− ...
x · cosx · (a · f − c · d)) · expea+ x · (a · f − c · d)) · nomc if y < 0

((2 · a2 · f + (−2 · c · d− 2 · f · (e− x)) · a+ 4 · d · (b · f − (1/2) · c · (e+ x))) · expeam+ ...

(−2 · a2 · f + (2 · c · d+ 2 · f · (e+ x)) · a− 4 · (b · f − (1/2) · c · (e− x)) · d) · expeap− ...
(4 · (a · f − c · d)) · x) · nomr if y > 0

((−2 · a2 · f + (2 · c · d+ 2 · f · (e+ 2)) · a− 4 · d · (b · f − 0.5 · c · (e− 2))) · expea− ...
4 · a · f + 4 · c · d)/ea2 if y = 0

where:

nomc = 1/((−a2 − 2 · a · e− e2 − x2) · x) nomr = 1/(x · eam · eap)
sinx = sin(0.5 · x) expeap = exp(0.5 · eap)
cosx = cos(0.5 · x) expeam = exp(0.5 · eam)

expea = exp(0.5 · (a+ e)) ea2 = (a+ e)2

eap = a+ e+ x expea = exp(0.5 · (a+ e))

eam = a+ e− x

For a complete deviation of the matrix exponential, please look at the supplied Maple document matrix exponential.mw
or respective pdf file matrix exponential.pdf.



4. Transformed samples
In Figs. 1–4 we have shown additional transformed samples for the different experiments in the paper. We have not

included samples from the homographic and diffeomorphic affine transformer, since these are very similar to the transforma-
tions of the affine transformer.

Figure 1: Examples of learned transformations for the different models on the fashion dataset. From top to bottom: No
transformer, Affine transformations, TPS transformations, CPAB transformations, Affine+CPAB transformations.



Figure 2: Examples of learned transformations for the different models on the CIFAR10 dataset. From top to bottom: No
transformer, Affine transformations, TPS transformations, CPAB transformations, Affine+CPAB transformations.

Figure 3: Examples of learned transformations for the different models on the LFW dataset. From top to bottom: No
transformer, Affine transformations, TPS transformations, CPAB transformations, Affine+CPAB transformations.



Figure 4: Examples of learned transformations for the different models on the LFW dataset. From top to bottom: No
transformer, Affine transformations, TPS transformations, CPAB transformations, Affine+CPAB transformations.

References
[1] O. Freifeld. Deriving the CPAB derivative. Technical report, The Department of Computer Science, Ben-Gurion Uni-

versity, 2018. 2
[2] O. Freifeld, S. Hauberg, K. Batmanghelich, and J. W. Fisher. Highly-expressive spaces of well-behaved transformations:

Keeping it simple. In ICCV, 2015. 1, 2, 3, 4
[3] O. Freifeld, S. Hauberg, K. Batmanghelich, and J. W. Fisher. Transformations based on continuous piecewise-affine

velocity fields. IEEE TPAMI, 2017. 1, 2, 3


