
Supplementary Section
In this section, we include more details about our algorithm,
labeling functions, datasets as well as additional results and
comparisons, which could not be included in the main paper
due to space constraints.

A. Algorithm
Algorithm 2 presents the overall stepwise routine of the

proposed method, ADP , as described in Section 3. Dur-
ing the training phase, the algorithm updates weights of the
model by estimating gradients for a batch of labeled data
points. The hyperparameters that need to be provided in-
clude standard parameters that are provided while training
a GAN, such as: (i) number of iterations of Algorithm 2;
(ii) parameter k (similar to [18]) that describes how many
times D and DLFB would be updated with respect to G;
and (iii) minibatch size m. Using empirical studies, we
chose m = 128, k = 2 and number of iterations to be
60, 000.

B. Datasets
In this section, we provide more information on the

datasets used for validating ADP in this work: MNIST,
Fashion MNIST, SVHN and CIFAR 10. The MNIST
dataset comprises 28×28 grayscale images (with one hand-
written digit in each image) along with the corresponding
label, with 50,000 training samples (image-label pairs). In
case of SVHN, we used “format 2” of the dataset, which
comprises 73257 32 × 32 images (each containing a digit
captured from street views of house numbers) with the cor-
responding labels. In case of CIFAR 10, we merged five
training batches of the dataset and built a training set of
50,000 images. This dataset contains RGB-images each
of size of 32 × 32 spanning 10 classes: automobile, air-
plane, bird, cat, deer, dog, frog, horse, ship, truck. The total
number of samples are almost equally distributed across all
classes. Fashion MNIST, similar to MNIST, consists of a
training set of 50,000 28× 28 grayscale images with one of
10 classes: Tshirt, Trouser, Pullover, Dress, Coat, Sandal,
Shirt, Sneaker, Bag, Ankle boot.

We also used the LookBook [47] dataset (Figure 10) to
demonstrate cross-domain multi-task learning using ADP ,
as described in Section 5. This dataset contains 84,748 im-
ages across 17 classes: Midi dress, mini dress, coat, jacket,
fur jacket, padded jacket, hooded jacket, jumper, cardigan,
knitwear, blouse, shirt, sleeveless tee, short sleeve tee, long
sleeve tee, hoody, vest. In this work, we grouped these 17
classes into 4 classes: coat, pullover, t-shirt, dress, in or-
der to match with the Fashion MNIST dataset and thus help
study cross-domain learning. We grouped coat, jacket, fur
jacket, padded jacket, hooded jacket, jumper, cardigan to
a single coat class; hoody to the pullover class; sleeveless

Figure 10: Sample images from the datasets studied in this work:
(a) CIFAR 10, (b) Fashion MNIST, (c) MNIST, (d) LookBook

tee, short sleeve tee to the t-shirt class; cardigan, knitwear,
blouse, Midi dress, mini dress to the Dress class. Fashion
MNIST dataset also has the same classes: coat, pullover,
t-shirt, Dress among its label, thus facilitating our study.

No additional pre-processing was performed on MNIST,
Fashion MNIST, CIFAR 10 or the LookBook datasets. In
case of SVHN, an additional crop was performed on each
image to ensure only one digit is present in the image. The
cropped image was subsequently sampled to maintain the
32 × 32 size. Figure 10 shows illustrative examples of im-
ages from the chosen datasets.

C. More on Labeling Functions

The Labeling Functions Block (LFB) in Figure 2a (Sec-
tion 3) is implemented using the open-source framework,
Snorkel [36]. We modified the underlying architecture of
the Snorkel framework to include an adversarial approach,
which otherwise estimates dependencies using MLE invok-
ing Gibbs sampling. Labeling functions of three kinds:
heuristics, image processing-based and deep learned fea-
tures have been used in this work, as described in Section 4.
Examples of labeling functions used in this work are shown
as Labeling Functions 1, 2, 3 and 4. For each labeling func-
tion, a simple threshold rule on the L2-norm of the afore-
mentioned features is used. For each class of a dataset, the
threshold information is obtained empirically as the average
L2-norm of the feature vectors of 20 random samples of that
class (with α-trimming to remove outliers). It is worthy to
mention that, for an abstract understanding of working pro-
cess of our labeling functions, the return value of example

Algorithm 2: Training ADP
Input: Number of iterations, Number of steps to train D: k, Minibatch size: m
Output: Trained ADP model

for number of iterations do
for k steps do

Given noise prior z ∼ N (0, I), draw a batch of m samples from G: {(x̃1,Θ1,Φ1), · · · , (x̃m,Θm,Φm)} ;
Use Equation 3 (from LFB) to compute probabilistic label vectors {Λ1, · · · ,Λm} given
{(x̃1,Θ1,Φ1), · · · , (x̃m,Θm,Φm)};

Draw a batch of m image-label pairs ((x1, y1), · · · , (xm, ym)) from real distribution Preal(x, y);
Update weights of discriminators D and DLFB (ψd and ψl respectively), using mini-batch stochastic gradient
ascent with gradients as computed below:

∇ψd

1

m

m∑
i=1

[
logD(xi, yi) + log(1−D(x̃i,Λi))

]
and,

∇ψl

1

m

m∑
i=1

[
logDLFB(Φreali) + log(1−DLFB(Φi))

]
end
Given noise prior z ∼ N (0, I), draw a batch of m samples from G: {(x̃1,Θ1,Φ1), · · · , (x̃m,Θm,Φm)};
Update weights of generator G, ψg , using mini-batch stochastic gradient descent with gradients as computed below

(each step below updated sequentially, one after another);

∇ψg

1

m

m∑
i=1

[
log(1−DLFB(Φi))

]
and

∇ψg

1

m

m∑
i=1

[
log(1−D(x̃i,Λi))

]
end

Labeling Functions 3 and 4 are one-hot encoding. Though
in practice we fit a nonlinear function to get a probabilistic
output.

C.1. Ablation Studies with Labeling Functions

In order to understand the effect of different kinds of
labeling functions, we performed an ablation study on the
CIFAR10 dataset (considering it is the most natural of the
considered datasets, and that it allows us to compute an In-
ception score to quantitatively compare the performance of
various methods). In this study, we did not alter any hy-
perparameters described in Section 4. Our ablation study
considers the following models:

M1: ADP : Full model

M2: ADP with no dependencies: Same model as ADP hav-
ing 55 labeling functions, as in Table 3. Each label-
ing function is, however, considered independent of
the other.

M3: ADP with only heuristic labeling functions: Same
model as ADP with 36 heuristic labeling functions but
without any image processing or deep learned feature-
based labeling functions

M4: ADP with only image processing labeling functions:
Same model as ADP with only 17 image processing-
based labeling functions but without heuristic or deep
learned feature-based labeling functions

M5: ADP with only deep learned feature-based labeling
functions: Same model as ADP with only 2 deep
learned feature-based labeling functions but without
heuristic or image processing labeling functions

M6: ADP with (heuristic labeling functions + deep learned
feature-based labeling functions)

M7: ADP with (deep learned feature-based labeling func-
tions + image processing labeling functions)

Labeling Function 1: Sample heuristic labeling func-
tion (used for blobs in digits like: 0, 9, 6)

Input: Image
Output: Probabilistic label vector

/* Decision tree for English numerals

recognition [24] */

if blob(Image) == TRUE then
if blob diameter(Image) ≤ 0.5cm then

number = count blob(Image);
if number == 2 then

return [0.2,0,0,0,0,0.1,0,0,0.6,0.1];
end
if number == 1 then

return [0.6, 0, 0.2, 0, 0.1, 0, 0, 0, 0.1]
end

end
if blob diameter(Image) > 0.5cm then

return [0.4, 0, 0, 0, 0.1, 0, 0.3, 0.1, 0.1]
end

end

Labeling Function 2: Sample heuristic labeling func-
tion (used for digits with blob and stem like: 4, 6, 9)

Input: Image
Output: Probabilistic label vector

/* Decision tree for English numerals

recognition [24] */

if blob(Image) == TRUE then
number = count stem (Image);
if number == 0 then

return [0.8, 0, 0, 0, 0.1, 0, 0, 0, 0.1]
end
if number == 1 then

return [0.1, 0, 0, 0, 0.4, 0, 0.4, 0, 0.1]
end
if number == 2 then

return [0, 0, 0, 0, 0.8, 0, 0, 0, 0.2]
end

end

M8: ADP with (image processing labeling functions +
heuristic labeling functions)

The inception scores for the aforementioned 8 models are
presented in Table 7. The base ADP model comprising of
all labeling functions outperforms all other models, high-
lighting the usefulness of a variety of labeling functions to
model the non-trivial P (x, y) distribution.

D. More Qualitative Results
In addition to the results on CIFAR 10 presented in

Section 4.4, we also studied the performance of our ADP

Labeling Function 3: Sample image processing based
labeling function (based on Bag-of-Words)

Input: Image, n: Number of classes
Output: Probabilistic label vector

/* NOTE: Loop presented below for purposes

of clarity - it is implemented only once

for a dataset */

for i=1· · · n do
vavgi = average value of L2 norm of
Bag-of-feature() on subset of training samples
from class i;

end
v = Bag − of − feature(Image);
vimage = ‖v‖;
return OneHot(arg mini

[
|vavgi − vImage|

]
)

Labeling Function 4: Sample deep learned feature-
based labeling function

Input: Image, n: Number of classes, Kernels
from first layer of pre-trained AlexNet (trained on
ImageNet)

Output: Probabilistic label vector
/* Deep learning based labeling function */

m = Number of kernels from first layer of pre-trained
AlexNet;

for i=1· · · n do
for j = 1 · · · m do

vavgij = average value of Frobenius norm of
activation map of jth kernel on subset of
training samples from class i;

end
end
for j = 1 · · · m do

vImagej = value of Frobenius norm of activation
map of jth kernel on Image;

end
return OneHot(arg mini[vavgi · vImage])

M1 M2 M3 M4 M5 M6 M7 M8
Inception
Score 8.7 4.32 5.52 4.91 4.73 7.01 7.52 7.27

Table 7: Ablation study w.r.t labeling functions, as described in
Section C.1

method against other generative methods (CGAN, AC-
GAN, InfoGAN, CoGAN, TripleGAN) on MNIST, SVHN
and Fashion MNIST datasets. Similar to CIFAR 10 genera-
tion, we changed the use case setup of the other methods to
generate labeled images, using the publicly available code
for each of the methods. Figures 11, 12 and 13 present these
results.

Figure 11: Image-label pairs generated by training on MNIST dataset using CGAN, ACGAN, InfoGAN, CoGAN, TripleGAN and our
method, ADP . For a given model, the columns of images represents generations after 0.01k, 0.1k, 1k, 3k, 6k and 9k epochs, and the rows
correspond to the associated class label. It is evident that from 6k epochs onward, ADP model starts generating quality images across
classes and with a good image-to-label correspondence.

Figure 12: Image-label pairs generated by training on SVHN dataset using CGAN, ACGAN, InfoGAN, CoGAN, TripleGAN and ADP .
For a given model, the columns of images represents generations after 0.1k, 1k, 10k, 30k, 40k and 60k epochs, and the rows correspond to
the associated class label.

MNIST: Figure 11 shows that both our method ADP and
TripleGAN generate good quality images on the MNIST
dataset. We observe that both ADP and TripleGAN give
a high image-to-label correspondence. Surprisingly, state-
of-the-art methods such as CGAN, ACGAN, InfoGAN and
CoGAN fail to capture image-to-label correspondence de-
spite generating good quality images.

SVHN: As shown in Figure 12, we observe that our
method generates human-recognizable images with a good
image-to-label correspondence in just 1k epochs on the rel-
atively harder SVHN dataset. At higher epochs, CoGAN
(epoch = 30) and TripleGAN (epoch = 40) also generate
images of good quality, but broadly fail to capture differ-
ent styles, backgrounds and illuminations of the generated
digit.

Fashion MNIST: Most of the considered methods do
well on this dataset. ADP and TripleGAN provide the
sharpest results on close visual observation (Please see Fig-
ure 13).

E. More Quantitative Results

Parzen Window Based Evaluation: In addition to the re-
sults with Inception score and HTT presented in Section 4.4,
we compared our method against other generative models
(described in Section 4) based on the Parzen window score
at test time. Parzen window [5] is a commonly used non-
parametric density estimation method to evaluate generative
models (especially GANs [18]) for which exact likelihood is
not tractable. Based on the samples generated by the model,
we use a Parzen window with a Gaussian kernel as a density
estimator. This helps obtain a proxy for true log-likelihood
and thereby evaluate test log-likelihood. These results are
shown in Table 8. The table shows that ADP has performed
significantly well on MNIST (Score is 344) and SVHN
(Score is 246) dataset and outperformed other state-of-the-
art models including TripleGAN. For Fashion MNIST, our
method is a close second with respect to TripleGAN. We
chose the Parzen window size using cross-validation, as de-
scribed in [18].

Figure 13: Image-label pairs generated by training on Fashion MNIST dataset using CGAN, ACGAN, InfoGAN, CoGAN, TripleGAN and
our method, ADP . For a given model, the columns of images represents generations after 0.1k, 1k, 10k, 15k, 20k and 25k epochs, and the
rows correspond to the associated class label.

Figure 14: (a) Test-time classification cross-entropy loss of a pre-trained ResNet model on image-label pairs generated by ADP, ADP (i.e.
only its Image-GAN component) with majority voting and ADP (i.e. only its Image-GAN component) with DP for labels; (b) Average
running time of ADP against other methods to estimate the relative accuracies and inter-function dependencies in DP.

F. More Results on Multi-task Joint Distribu-
tion Learning

In continuation to the results presented in Section 5 (and
1), we present more results for the capability of ADP to
perform multi-task joint distribution learning in Figure 16.
The figure captures our promise and shows that ADP is able
to generate samples from two different domains, including
samples of different colors.

G. Comparison against Vote Aggregation
Methods

Comparison against Majority Voting and DP: To study
the usefulness of learning relative accuracies and inter-
function dependencies using ADP , we compared the per-
formance of our method, both with majority voting and
Data Programming (DP [36]). In majority voting, LFB
does not estimate relative accuracies and inter-function de-
pendencies of labeling functions as described in Section 3.
Instead, for a given image, each labeling function of LFB

makes a probabilistic prediction, and we take a maximum
vote to obtain the final label. As in Section 4.4, we stud-
ied the test-time classification cross-entropy loss of a pre-
trained ResNet model on image-label pairs generated by
ADP, ADP (i.e. only its Image-GAN component) with ma-
jority voting and DP. The results are presented in Figure
14a, which shows that ADP has significantly lower cross-
entropy loss than the other two methods, thus corroborating
its effectiveness.

Adversarial Data Programming vs MLE-based Data
Programming: To further quantify the benefits of our
ADP , we also show how our method compares against
Data Programming (DP) [36] using different variants of
MLE: MLE, Maximum Pseudo-likelihood, and Hamilto-
nian Monte Carlo. We note that DP only aggregates labels;
we hence, combined a vanilla GAN with DP as separate
components to conduct this study. We started with a small
number of labeling functions (viz., 35 functions) and pro-
gressively added additional labeling functions, noting the

GAN CGAN ACGAN InfoGAN CoGAN ADP Triple
MNIST 198 201 204 225 278 344 321
FMNIST 213 206 234 276 254 292 312
SVHN 87 145 178 158 123 246 223

Table 8: Parzen window based evaluation on MNIST, FMNIST and SVHN datasets.

Figure 15: Sample results of image-label pairs generated by combining a vanilla GAN (for image generation) and DP [36] (for label
generation) using the same labeling functions used in this work. Row labels represent the original class label (am = automobile) and
column labels are provided by DP. Note the poor image-label correspondence, supporting the need for our work.

Figure 16: Demonstration of cross-domain multi-task learning us-
ing ADP : (a)(b) Generated samples of Shirt (class 6 of Fashion
MNIST dataset); (c) Generated samples of T-shirt (class 0 of Fash-
ion MNIST dataset). Samples generated of the LookBook dataset
are color images (top rows), while those of Fashion MNIST are
grayscale images (bottom rows).

time taken by each aforementioned parameter estimation
method. Figure 14b presents the results and shows that ADP
is almost 100X faster than MLE-based estimation. Figure
15 also shows sample images generated by the vanilla GAN,
along with the corresponding label assigned by MLE-based
DP using the same labeling functions as used in our work.

Clearly, the labels are incorrect, thus supporting the value
of the proposed work in learning a joint distribution, than
combining two individual components.

