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1. Sherman-Morrison formula
We first provide more detail for the Sherman-Morrison

formula, which allows us to explicitly compute the inverse
of homographies. The Sherman-Morrison formula can be
stated as follows:
Theorem 1 Assume A is invertible, and u and v are column
vectors. Furthermore, assume 1 + vTA−1u 6= 0. Given

B = A+ uvT, (1)

the inverse B−1 can be obtained as

B−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (2)

In our context, the homography is defined as

H = K(R− tñT)K−1.

Let us first ignore K and concentrate on the central part

H̃ = R− tñT , (3)

where R is a rotation matrix and is thus invertible, i.e.,
R−1 = RT. Therefore, Eq. 3 satisfies the conditions of
B in Eq. 1, and the inverse H̃−1 can be written as

H̃−1 = RT +
RTtñTRT

1− ñTRTt
.

Re-introducing K, and following the standard rule for ma-
trix product inversion, lets us write the inverse H−1 as

H−1 = KH̃−1K−1.

2. Experiments
In this section, we provide additional results on the two

datasets. We further illustrate the m = 16 synthesized
images obtained from the homographies generated by our
method, and show additional examples of the selection
maps our network predicts. We then provide the visuali-
sation of our estimated depth and normal maps for KITTI
dataset and discuss failure cases of our approach.

2.1. Additional Results

We provide additional qualitative results on the KITTI
dataset in Figs. 1, 2 and 3, and on the ScanNet dataset in
Figs. 4 and 5. As those in the main paper, they clearly illus-
trate the benefits of our approach over the state-of-the-art
appearance flow baseline [1]; specifically, accounting for
geometry lets us produce much more realistic novel views.
Note also that our complete approach (Ours-Full), with the
refinement network, typically yields sharper results than our
basic framework without refinement (Ours-Geo). This can
be seen, e.g., in the third to seventh rows of Fig. 1.

In Table 1, we analyze the influence of the quality of the
depth and normal estimates and of learning the selection
maps on ScanNet. Note that, compared to Table 2 in the
main paper which shows a similar analysis for KITTI, we
eliminated the factor ‘gtNor’ because it is computed from
‘gtDep’. In essence, the behavior is the same as for KITTI.
The best results are obtained with the ground-truth depth
maps, which leaves room for our method to improve as
progress in depth estimation is made. More importantly, our
learnt selection maps give a significant boost to our results,
whether using ground-truth depth or estimated one.

2.2. Synthesized Candidate Images

In Fig. 6, we show the synthesized images obtained from
our m = 16 predicted homographies for one input image.
When compared with the ground-truth novel view, we can
see that different homographies account for the motion of
different regions in the image. For instance, the homog-
raphy corresponding to the top-left image accounts for the
motion of the road. By contrast, the homography corre-
sponding to the bottom-right image models the motion of
the buildings. Correctly combining these images then al-
lows us to obtain a realistic novel view, as shown in the top
row of Fig. 6.
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gtDep estDep estNor Seed SelMap `1
3 7 3 3 7 0.174
3 7 3 7 3 0.159
7 3 3 3 7 0.184
7 3 3 7 3 0.167

Table 1. Influence of the quality of the depth and normal es-
timates and of learning the selection maps on ScanNet. From
left to right: gtDep denotes the ground-truth depth; estDep and est-
Nor denote the estimated depth and normal, respectively; Seed and
SelMap denote the hard-segmentations corresponding to the seed
regions and the selection map obtained with our selection network,
respectively.

2.3. Selection Maps

In Fig. 7, we provide additional results from our se-
lection network. While our seed regions typically cover
only parts of the road, trees, sky, and buildings, our pre-
dicted selection maps can extend them to larger planar and
semantically-coherent regions.

2.4. Depth and Normal prediction

In Fig. 8, we provide the visualisation of the estimated
depth and normal map from our network for sampled im-
ages from KITTI test set. It shows that our estimation can
well capture the scene structure compared with the ground
truth.

2.5. Failure Cases

In Fig. 9, we show typical failure cases of our approach.
The failure cases are mainly due to i) moving objects, whose
locations cannot be explained by camera motion (see the
first row); 2) the need to hallucinate large portions of the im-
age (e.g., because of backward motion), in which case our
method tends to generate background and miss foreground
objects (see the last two examples).
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Input view App. Flow [1] Ours-Geo Ours-Full Ground-truth

Figure 1. Qualitative comparison of our approach with the appearance flow method of [1] on KITTI. While appearance flow yields
artifacts, our approach, which reasons about 3D geometry, yields more realistic results.



Input view App. Flow [1] Ours-Geo Ours-Full Ground-truth

Figure 2. Qualitative comparison of our approach with the appearance flow method of [1] on KITTI. While appearance flow yields
artifacts, our approach, which reasons about 3D geometry, yields more realistic results.



Input view App. Flow [1] Ours-Geo Ours-Full Ground-truth

Figure 3. Qualitative comparison of our approach with the appearance flow method of [1] on KITTI. While appearance flow yields
artifacts, our approach, which reasons about 3D geometry, yields more realistic results.
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Figure 4. Qualitative results of our approach on ScanNet.
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Figure 5. Qualitative results of our approach on ScanNet.



Input image Ground-truth novel view Ours-Full Ours-Geo

Synthesized images

Figure 6. Synthesized images from the 16 estimated homographies. In the top row, we show the input image, the ground-truth novel
view and the results of our complete model (Ours-Full) and of our model without refinement (Ours-Geo). The remaining images correspond
to images synthesized with our estimated homographies. Note that different homographies correctly account for the motion of different
regions between the input and novel view. For instance, the top-left image models the motion of the road, while the bottom-right one
accounts for the motion of the buildings.



Input image Input Image

Seed Region Selection Map Overlay Image Seed Region Selection Map Overlay Image

Figure 7. Sample seed regions and predicted selection maps in the input view. From left to right: seed region, predicted selection map
and predicted selection map overlaid on the input image. Red indicates a high likelihood for a pixel to belong to the plane defined by the
seed region and blue a low likelihood.



Image GT-depth Est-depth Est-normal

Figure 8. Visualization of the estimated depth and normal for KITTI. Color indicates depth (red is far, blure is close).



input view Ours-Geo Ours-Full Ground-truth

Figure 9. Failure cases of our approach on KITTI. Typical failures correspond to moving objects, or hallucination of large portions of
the image (e.g., due to backward motion), in which case our approach tends to generate background instead of foreground objects.


