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Abstract

In this supplementary document, we offer additional
derivation details for the pre-processing transformations
used to derive our minimal solvers introduced in Sec. 4 of
the paper. Sec. 1.1 of this document specifies how to ob-
tain the rotation that aligns the camera with the Z axis
as required by the upright cases of both PROBLEM 4-DOF
and PROBLEM 5-DOF as presented in the main paper. In
Sec. 1.2, we give details on how to eliminate the two first
components of the camera translation, a process that is
needed by all the solvers presented in the paper that use
only one 2D-3D correspondence. Finally, we offer an addi-
tional experiment showing the effect of our Hybrid RANSAC
scheme on different types of images. There we show that,
depending on the difficulties present on a particular in-
stance of the problem, our method will adapt accordingly.

1. Details on Solvers Derivation
1.1. Aligning the Camera with a Known Vertical

In Sec. 4 of the paper, we claim that one can always rep-
resent the camera rotation by using (3) from the main paper,
if one knows the direction of gravity in the camera frame
{C}. In this section we show that one can always obtain
a rotation that allows the camera and global Z axis to be
aligned. Doing this allows the rotation between the cam-
era and the global frames to be reduced to the simple form
presented in (3).

Let Cg be the direction in the camera frame of the gravity
vector Gg = [0 0 1]ᵀ in the global frame {G}. We aim to
find the rotation Rg to rotate the frame {C} into {C ′}, s.t.

Rg
Cg =

[
0
0
1

]
. (1.1)

The rotation that aligns two vectors can be found by a sim-
ple procedure outlined next. Let a,b ∈ R3 be unit length

vectors, and v = a× b be the cross product between them.
One may write the rotation R that aligns a with b in terms
of the axis of rotation v and its angle θ using the Euler-
Rodrigues formula:

R = I+ sin θbvcx + (1− cos θ)bvc2x , (1.2)

where sin θ = |v| and cos θ = a ·b. For our particular case,
finding the rotation that aligns Cg and [0 0 1]ᵀ is particularly
simple, since Cg · [0 0 1]ᵀ = Cgz and Cg× [0 0 1]ᵀ = [Cgy −
Cgx 0]ᵀ.

Thus, the rotation to align Cg to the Z-axis is given by

Rg =

−Cg2xκ+ 1 −Cgx
Cgyκ −Cgx

−Cgx
Cgyκ −Cg2yκ+ 1 −Cgy

Cgx
Cgy 1− Cg2x + Cg2yκ

 ,

(1.3)
with κ = 1/(Cgz +1). Given Rg, one can then pre-rotate all
measurements and camera centers in {C} to {C ′}, an aux-
iliary frame of reference where the local Z-axis is aligned
to the Z-axis of the global frame of reference {G}. Hence,
the rotation of the camera pose is merely a rotation about
Z. Consequently, one may use (3) from the main paper to
parameterize this rotation.

1.2. Elimination of Translation Variables

For minimal problems where we have only one 2D-3D
correspondence (i.e., H41, uH21, H51+s and uH31+s), we
proceed to eliminate the first two unknown elements of the
camera translation using this correspondence (c.f . (8) in the
main paper).

Let v be a camera ray, c its center of projection (set to
zero for pinhole cameras), α its depth and s the scale of the
generalized camera. Then, the algebraic constrain given by
the 2D-3D correspondence {v↔ p} can be written as

αv + s c = Rp+ t , (1.4)

where p is the matched 3D point and R, t is the camera
pose. As explained in the main paper in Sec. 4, if we can
rotate and translate the camera frame {C} to some interme-
diate frame {C ′} where c = 0 and v = [0 k1 k2]

ᵀ, then
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Figure 1. Number of times each solver is chosen by our hybrid method for 3 different images with different inlier ratios.

we may express t in terms of tz , i.e., the last element of
translation (c.f . (8) in the paper). Here we will explain a
simple procedure to transform {C} to {C ′}, with the de-
sirable characteristic that the obtained transformation will
rotate only around the Z-axis. This is desirable since this
procedure can be used in combination with the change of
frames detailed in the previous section (i.e., the transforma-
tion for upright problems).

Let tp be the translation that transforms elements from
{C} to {C ′}. From our requirements of c = 0, it is easy to
see that

tp = −c . (1.5)

The rotation Rp from {C} to {C ′} must be such that the
image ray has zero x component, i.e.,

Rpv =

[
0
v′y
v′z

]
. (1.6)

In contrast to (1.1), there is not a unique rotation that aligns
the two vectors in play, rather we are interested in the fam-
ily of rotations where the first element of the multiplication
by v is zero. Thus, in order to be compatible with previous
transformations for vertical alignment, we choose to define
Rp as a rotation around the Z-axis. So, similarly to (3) in
the paper, Rp = Rp(a, b), where a and b are the only two
unknown elements of the rotation. We can then solve a very
small linear system in a and b given v. This gives the fol-
lowing rotation

Rp =

vyτ vxτ 0
vxτ vyτ 0
1 2 1

 with τ =
1√

v2x + v2y

, (1.7)

which one can use to pre-rotate the cameras and measure-
ments in {C} in order to be able to use (8).

2. Hybrid RANSAC Adaptability
The motivation behind the proposed RANSAC exten-

sion, is twofold. On one hand, we wish to have a procedure
that rejects outliers coming from different types of matches.
On the other hand, we want RANSAC to focus on matches

which, up to the current iteration, are expected to yield bet-
ter inlier counts, while at the same time exploring different
types of matches gradually. To this end, it is informative to
know how our Hybrid RANSAC can adapt to different types
of queries. As it can be seen in Fig. 1, for three different
images (selected from the Dubrovnik dataset), we see very
different usages of minimal solvers by our RANSAC vari-
ant. Given the inlier ratios for 2D-2D and 2D-3D matches
of each image (shown on top of each plot in Fig. 1), the
distribution of selected solvers is expected and justified.


