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This supplemental material includes additional results
and discussions. We first present additional comparisons
with Beeler et al. [2] and Fyffe et al. [3] in terms of infer-
ence accuracy in Section 1. In Section 2, we provide an ex-
periment showing the results of using different sizes of con-
volutional filter for separating geometric details (medium
and high frequencies). In Section 3, we produces the results
using different resolutions of input textures. In Section 4,
we investigate the performance of inferring geometry using
normal map. We provide the comparison with state-of-the-
art method in terms of surface normal prediction accuracy
in Section 5. Section 6 shows failure cases of our method.


1. Geometry Inference from Video Sequence
We provide a video in the supplemental package that


shows the results of geometry inference from video se-
quences. In particular, we compare our method with Beeler
et al. [2] and Fyffe et al. [3]. Figure 1 demonstrates the re-
sults inferred from one of the video frames. As manifested
in the highlighted circles, both Beeler et al. [2] and Fyffe et
al. [3] fail to distinguish between surface pigmentation and
the actual surface bumps, introducing incorrect pits in the
reconstructed geometry. Our method, on the other hand, is
capable to differentiate between skin pores and moles based
on their locations on face, producing correct inference.


2. Different Kernel Sizes for Geometry Detail
Separation


A key to the success of our method lies in factorizing
the learning of medium and high-frequency details. How-
ever, an improper threshold for the frequency separation
may greatly affects the performance of our algorithm. In
our implementation, to obtain the displacement map DL of
medium-scale details, we apply a low-pass convolutional
Gaussian filter to filter out high-frequency components. A
larger kernel size of the low-pass filter tends to keep more
low and medium-frequency details. We then obtain the
high-frequency displacement map DH by subtracting DL


from the original displacement map D.
In this experiment, we investigate the uses of different


filter sizes for geometry detail separation. In Figure 2, we
compare the performance of kernel size (29, 29), which
is used in our implementation, with other candidate op-
tions: (7, 7) and (121, 121). As shown in the results, a
small kernel size (Figure 2a) fails to capture the medium-
scale geometries. On the other hand, too large kernel size,
(121, 121), suppresses the reconstruction of fine-scale de-
tails while introduces artifacts in middle-frequency compo-
nents as manifested in Figure 2c. Our choice of kernel size
can faithfully preserve both medium and high-frequency de-
tails.


3. Results on Low-Resolution Inputs
Our model can scale well to low-resolution inputs. In


this section, we evaluate the performance of our model by
using input texture maps with different levels of resolution.
In particular, in addition to a 1K texture map, which is the
standard input of our algorithm, we also experiment on tex-
ture maps with resolution 256 × 256 and 512 × 512. As
our network only takes input with fixed resolution, we first
upsample the low-resolution texture map to 1K resolution
using bicubic interpolation. As demonstrated in Figure 3,
even the resolution of input texture map is far lower than
the standard resolution, our approach can still produce plau-
sible result that captures both medium and high frequency
details.


4. Evaluation on using Normal Map as Geo-
metric Representation


Since surface normal maps are another popular repre-
sentation for high-frequency geometric details, we inves-
tigated the performance for directly learning medium and
high-frequency normal maps. Normal maps and displace-
ment maps implicitly contain the same information, where
surface normal represents the derivative of the displace-
ment. Unlike displacement, which is a single scalar value,
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(a) Input texture map (b) Beeler et al. [2] (c) Fyffe et al. [3] (d) Ours


Figure 1: Geometry inference from one of the vide frames. As highlighted in the circles, both Beeler et al. [2] and Fyffe et
al. [3] fail to distinguish surface pigmentation and the actual surface bumps while our method succeeds in faithfully predicting
the subtle geometric details.


(a) (7,7) (b) (29,29) (c) (121,121)


Figure 2: Small kernel size (a) only captures high fre-
quency. Using big kernel size (c) leads to suppressed high-
frequency details while introducing artifacts in medium-
frequency components. Appropriate kernel size (b) pre-
serves both medium and high-frequency details.


the normal map encodes a three-dimensional direction vec-
tor. In our experiment, we first rotate the world space nor-
mals to produce tangent normals relative to the base mesh
thus eliminating any low-frequency geometric information.
Secondly, we apply a low-pass filter to these tangent nor-
mals to factor out the medium frequency details. The high
frequency normal is obtained by rotating the original tan-
gent normal with the rotation between the medium fre-


(a) 256× 256 (b) 512× 512 (c) 1024× 1024


Figure 3: Our method still generates feasible results given
low-resolution input texture maps. The closeups are shown
in the second row.


quency normal and a unit z-vector. To enhance the high-
frequency details so that the network can learn better, we
apply the same scaling technique we use for displacement
on x-component and y-component of the tangent normal.
We compare the reconstruction results as normal maps since
converting from displacement map to normals maps has a
fast closed form solution. Both results are obtained using
1K-resolution input. As demonstrated in Figure 5, learn-
ing from normal maps fails to capture the true distribution
of fine-scale facial geometries. One possible reason is that







Figure 4: Our method could generate much more subtle de-
tails (middle) than the surface normal prediction Bansal et
al. [1] (left).


displacement maps encode detail more directly with fewer
degrees of freedom.


5. Surface Normal Prediction Accuracy


We provide the comparison with Bansal et al. [1] in
terms of normal prediction accuracy. Bansal et al. [1] offers
the state-of-the-art performance on estimating surface nor-
mal using convolutional neural network. The normal map
predicted by our approach is converted from the output dis-
placement map. The model of Bansal et al. [1] is trained
using the same data with ours. Figure 4 compares the re-
constructed results after embossing the inferred normal map
onto our base mesh. As illustrated in the figure, our ap-
proach significantly outperforms the technique in predicting
high-fidelity mesoscopic details.


6. Failure Cases


Though our training dataset contains several examples
of commonly applied cosmetics, our model cannot properly
handle more pronounced theatrical makeups. As shown in
Figure 6, when extreme makeup is presented, our algorithm
fails to effectively distinguish the pigmentation introduced
by the cosmetics and the actual geometric variations. In the
future work, we plan to include such extreme cases in our
training set to improve the robustness of our model.
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(a) Mid-Frequency (b) High-Frequency (c) Combination


Figure 5: Top row: results based on normal learning. Bottom row: results based on displacement learning. From left to
right, we show the geometry inference results after embossing the normal map of medium, high and combined frequencies,
respectively.







Figure 6: Failure case with extreme makeup: left - input texture; center - our result; right - ground truth [4].






