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Abstract

We give proofs of the presented theoretical results in
Appendix A, implementation details of the methods in Ap-
pendix B, and experiment details in Appendix C.

A. Proofs

A.1. Proof of Proposition 1

Clearly, BCD stops when there is no strict descent of
the energy. Since the solution at each iteration is discrete
and the number of nodes as well as the number of labels
are finite, BCD must stop after a finite number of iterations.
Suppose that this number is k: E(x(k+1)) = E(x(k)). At
each inner iteration (i.e. Step 2 in Algorithm 1), the label
of a node is changed to a new label only if the new label
can produce strictly lower energy. Therefore, the labeling
of x(k+1) and x(k) must be the same because they have the
same energy, which implies x(k+1) = x(k), i.e. x(k) is a
fixed point.

A.2. Proof of Equation (32)

Recall from (20) that

F (x1, . . . ,xD) =

D∑
α=1

∑
i1...iα∈C

Fi1...iα
⊗{

x1
i1 , . . . ,x

α
iα

}
,

(43)
Clearly, the terms corresponding to any α < d do not in-
volve xd. Thus, we can rewrite the above as

F (x1, . . . ,xD) = cst(xd)

+

D∑
α=d

∑
i1...iα∈C

Fi1...iα
⊗{

x1
i1 , . . . ,x

α
iα

}
. (44)

We will show that the last double sum can be written as∑
i∈V

〈
pdi ,x

d
i

〉
, where pdi is given by (32). The idea is to

regroup, for each node i, all terms that contain xi. Indeed,

for a given d we have the identity:∑
i1i2...iα∈C

=
∑
id∈V

∑
i1...id−1idid+1...iα∈C

. (45)

Therefore, the double sum in (44) becomes

D∑
α=d

∑
id∈V

∑
i1...id−1idid+1...iα∈C

Fi1...iα
⊗{

x1
i1 , . . . ,x

α
iα

}
.

(46)
Rearranging the first and second sums we obtain

∑
id∈V

D∑
α=d

∑
i1...id−1idid+1...iα∈C

Fi1...iα
⊗{

x1
i1 , . . . ,x

α
iα

}
.

(47)
With the change of variable i← id this becomes

∑
i∈V

D∑
α=d

∑
i1...id−1iid+1...iα∈C

Fi1...iα
⊗{

x1
i1 , . . . ,x

α
iα

}
.

(48)

Now by factoring out xdi for each i ∈ V the above becomes

∑
i∈V

 D∑
α=d

∑
i1...id−1iid+1...iα∈C

Fi1i2...iα
⊗

{
x1
i1 , . . . ,x

d−1
id−1

,xd+1
id+1

, . . . ,xαiα

}> xdi , (49)

which is
∑
i∈V

〈
pdi ,x

d
i

〉
, where pdi is given by (32), QED.

A.3. Proof of Equations (36)–(38)

See Appendix B.3, page 14 on the details of ADMM.

A.4. Proof of Proposition 2

For PGD and FW, the result holds for general continu-
ously differentiable function E(·) and closed convex set X .



We refer to [2] (Sections 2.2.2 and 2.3.2) for a proof. Below
we give a proof for BCD.

In Proposition 1 we have shown that BCD reaches a
discrete fixed point x(k) after a finite number of iterations
k. Now, we show that this fixed point is stationary. De-
fine ∆i =

{
u ∈ R|Si| : u ≥ 0,1>u = 1

}
∀i ∈ V and let

x∗ = x(k+1) = x(k). At the last ith inner iteration (11) we
have:

E(x
(k+1)
[1,i−1],xi,x

(k)
[i+1,n]) ≥ E(x

(k+1)
[1,i−1],x

(k+1)
i ,x

(k)
[i+1,n])

(50)
for all xi ∈ ∆i, which is

E(x∗[1,i−1],xi,x
∗
[i+1,n]) ≥ E(x∗[1,i−1],x

∗
i ,x
∗
[i+1,n]) (51)

for all xi ∈ ∆i. Define for each i the function

E∗i (xi) = E(x∗1, . . . ,x
∗
i−1,xi,x

∗
i+1, . . . ,x

∗
n). (52)

Obviously E∗i (xi) is continuously differentiable as it is lin-
ear. Since x∗i is a minimizer of E∗i (xi) over ∆i, which
is closed and convex, according to (39) (which is a neces-
sary optimality condition) we have∇E∗i (x∗i )

>(xi − x∗i ) ≥
0 ∀xi ∈ ∆i. Notice that

∇E(x∗) =


∂E(x∗)
∂x1

...
∂E(x∗)
∂xn

 =

∇E
∗
1 (x∗1)
...

∇E∗n(x∗n)

 , (53)

we have

∇E(x∗)>(x− x∗) =

n∑
i=1

∇E∗i (x∗i )
>(xi − x∗i ). (54)

Since each term in the last sum is non-negative, we have
∇E(x∗)>(x− x∗) ≥ 0 ∀x ∈ X , i.e. x∗ is stationary.

A.5. Proof of Proposition 3

By Definition 2, a point (x1, . . . ,xD,y) is a KKT of (21)
if and only if it has the form (x∗, . . . ,x∗,y∗) (where x∗ ∈
X ) and at the same time satisfies

x∗d ∈ argmin
xd∈Xd

{
F (x∗, . . . ,x∗,xd,x∗, . . . ,x∗) + y∗>Adxd

}
(55)

for all d, which is equivalent to(
∂F

∂xd
(x∗, . . . ,x∗) + Ad>y∗

)>
(xd − x∗) ≥ 0

∀xd ∈ X d,∀d. (56)

The equivalence (“⇔”) follows from the fact that the objec-
tive function (with respect to xd) in (55) is convex. This
is a well-known result in convex analysis, which we re-
fer to Bertsekas, Dimitri P., Angelia Nedi, and Asuman

E. Ozdaglar. Convex analysis and optimization.” (2003)
(Proposition 4.7.2) for a proof. Note that from the neces-
sary optimality condition (39) we can only have the “⇒”
direction.

We need to prove that the sequence
{(x1(k) , . . . ,xD

(k)

,y(k))} generated by ADMM satis-
fies the above conditions (under the assumption that the
residual r(k) converges to 0).

Let (x∗1,x∗2, . . . ,x∗D,y∗) be a limit point of
{(x1(k) , . . . ,xD

(k)

,y(k))} (thus x∗d ∈ X d ∀d since
(X d)1≤d≤D are closed), and define a subsequence that
converges to this limit point by {(x1(l) , . . . ,xD

(l)

,y(l))},
l ∈ L ⊂ N where L denotes the set of indices of this subse-
quence. We have

lim
l→+∞
l∈L

(x1(l) , . . . ,xD
(l)

,y(l)) = (x∗1,x∗2, . . . ,x∗D,y∗).

(57)
Since the residual r(k) (30) converges to 0, we have

lim
l→+∞
l∈L

(
D∑
d=1

Adxd
(l)

)
= 0, (58)

lim
l→+∞
l∈L

(
xd

(l+1)

− xd
(l)
)

= 0 ∀d. (59)

On the one hand, combining (57) and (59) we get

lim
l→+∞
l∈L

(x1(l+1)

, . . . ,xD
(l+1)

,y(l+1))

= (x∗1,x∗2, . . . ,x∗D,y∗). (60)

(Note that the above is different from (57) because l + 1
might not belong to L.) On the other hand, combining (57)
and (58) we get

D∑
d=1

Adx∗d = 0, (61)

which is, according to (22), equivalent to

x∗1 = x∗2 = · · · = x∗D. (62)

Let x∗ ∈ X denote the value of these vectors. From (57)
and (60) we have

lim
l→+∞
l∈L

xd
(l)

= lim
l→+∞
l∈L

xd
(l+1)

= x∗ ∀d, (63)

lim
l→+∞
l∈L

y(l) = lim
l→+∞
l∈L

y(l+1) = y∗. (64)

It only remains to prove that (x∗, . . . ,x∗,y∗) satis-
fies (56). Let us denote for convenience

z
(k)
d = (x[1,d](k+1)

,x[d+1,D](k)) ∀d. (65)



According to (39), the x update (28) implies

(
∂Lρ
∂xd

(z
(k)
d ,y(k))

)> (
xd − xd

(k+1)
)

≥ 0 ∀xd ∈ X d,∀d,∀k. (66)

Since Lρ (27) is continuously differentiable, applying (63)
and (64) we obtain

lim
l→+∞
l∈L

∂Lρ
∂xd

(z
(l)
d ,y

(l)) =
∂Lρ
∂xd

(x∗, . . . ,x∗,y∗) ∀d.

(67)

Let k = l in (66) and take the limit of that inequality, taking
into account (63) and (67), we get(
∂Lρ
∂xd

(x∗, . . . ,x∗,y∗)

)>
(xd−x∗) ≥ 0 ∀xd ∈ X d,∀d.

(68)
From the definition of Lρ (27) we have

∂Lρ
∂xd

(x∗, . . . ,x∗,y∗)

=
∂F

∂xd
(x∗, . . . ,x∗) + Ad>y∗ + ρAd>

(
D∑
d=1

Adx∗

)

=
∂F

∂xd
(x∗, . . . ,x∗) + Ad>y∗. (69)

Note that the last equality follows from (22). Plugging the
above into the last inequality we obtain

(
∂F

∂xd
(x∗, . . . ,x∗) + Ad>y∗

)>
(xd − x∗) ≥ 0

∀xd ∈ X d,∀d, (70)

which is exactly (56), and this completes the proof.

A.6. Proof of Proposition 4

Let (x∗, . . . ,x∗,y∗) be a KKT point of (21). We have
seen in the previous proof that

(
∂F

∂xd
(x∗, . . . ,x∗) + Ad>y∗

)>
(xd − x∗) ≥ 0

∀xd ∈ X d,∀d. (71)

According to (31):

∂F

∂xd
(x1, . . . ,xD) = pd, (72)

where pd is defined by (32). Now let p∗d be the value of pd

where (x1, . . . ,xD) is replaced by (x∗, . . . ,x∗), i.e. p∗d =

(p∗d1 , . . . ,p
∗d
n ) where

p∗di =

D∑
α=d

 ∑
i1...id−1iid+1...iα∈C

Fi1i2...iα
⊗

{
x∗i1 , . . . ,x

∗
id−1

,x∗id+1
, . . . ,x∗iα

} ∀i ∈ V. (73)

Notice that ∂F
∂xd

(x∗, . . . ,x∗) = p∗d, (71) becomes(
p∗d + Ad>y∗

)>
(xd − x∗) ≥ 0 ∀xd ∈ X d,∀d. (74)

According to (23) we haveX ⊆ X d and therefore the above
inequality implies(

p∗d + Ad>y∗
)>

(x − x∗) ≥ 0 ∀x ∈ X ,∀d. (75)

Summing this inequality for all d we get(
D∑
d=1

p∗d

)>
(x− x∗)

+ y∗>

(
D∑
d=1

Ad

)
(x− x∗) ≥ 0 ∀x ∈ X . (76)

Yet, according to (22) we have
∑D
d=1 A

dx =∑D
d=1 A

dx∗ = 0. Therefore, the second term in the
above inequality is 0, yielding(

D∑
d=1

p∗d

)>
(x− x∗) ≥ 0 ∀x ∈ X . (77)

Now if we can prove that

D∑
d=1

p∗d = ∇E(x∗), (78)

then we have ∇E(x∗)>(x − x∗) ≥ 0 ∀x ∈ X and thus
according to Definition 1, x∗ is a stationary point of (RLX).

Let us now prove (78). Indeed, we can rewrite (73) as

p∗di =

D∑
α=d

 ∑
C∈C

C=(i1...id−1iid+1...iα)

FC
⊗{

x∗j
}
j∈C\i


∀i ∈ V. (79)

Therefore,

D∑
d=1

p∗di =

D∑
d=1

D∑
α=d

∑
C∈C

C=(i1...id−1iid+1...iα)

FC
⊗{

x∗j
}
j∈C\i

∀i ∈ V. (80)



Let’s take a closer look at this triple sum. The double sum

D∑
α=d

∑
C∈C

C=(i1...id−1iid+1...iα)

basically means iterating through all cliques whose sizes
are ≥ d and whose dth node is i. Obviously the condition
“sizes ≥ d” is redundant here, thus the above means iter-
ating through all cliques whose dth node is i. Combined
with

∑D
d=1, the above triple sum means for each size d,

iterating through all cliques whose dth node is i, which is
clearly equivalent to iterating through all cliques that con-
tain i. Therefore, (80) can be rewritten more compactly as

D∑
d=1

p∗di =
∑

C∈C(i)

FC
⊗{

x∗j
}
j∈C\i ∀i ∈ V, (81)

where C(i) is the set of cliques that contain the node i. Re-
call from (14) that the last expression is actually ∂E(x∗)

∂xi ,
i.e.

D∑
d=1

p∗di =
∂E(x∗)

∂xi
∀i ∈ V, (82)

or equivalently

D∑
d=1

p∗d = ∇E(x∗), (83)

which is (78), and this completes the proof.

B. More details on the implemented methods
We present additional details on PGD, FW, ADMM as

well as CQP (we omit BCD since it was presented with suf-
ficient details in the paper).

Recall that our nonconvex relaxation is to minimize

E(x) =
∑
C∈C

FC
⊗
{xi}i∈C (10)

subject to x ∈ X :=
{
x
∣∣∣ 1>xi = 1,xi ≥ 0 ∀i ∈ V

}
.

B.1. PGD and FW

Recall from Section 4.1 that the main update steps in
PGD and FW are respectively

s(k) = argmin
s∈X

∥∥∥x(k) − β(k)∇E(x(k))− s
∥∥∥2
2
, (84)

and
s(k) = argmin

s∈X
s>∇E(x(k)). (85)

Clearly, in the PGD update step (84) the vector s(k) is
the projection of x(k) − β(k)∇E(x(k)) onto X . As we

have discussed at the end of Section (4.2), this projec-
tion is reduced to independent projections onto the simplex{
xi | 1>xi = 1,xi ≥ 0

}
for each node i. In our implemen-

tation we used the method introduced in [6] for this simplex
projection task.

The FW update step (85) can be solved independently
for each node as well:

s
(k)
i = argmin

1>si=1,si≥0
s>i
∂E(x(k))

∂xi
∀i ∈ V, (86)

which is similar to the BCD update step (11) and thus can
be solved using Lemma 1.

Next, we describe the line-search procedure (17) for
these methods. Before going into details, we should note
that in addition to line-search, we also implemented other
step-size update rules such as diminishing or Armijo ones.
However, we found that these rules do not work as well
as line-search (the diminishing rule converges slowly while
the search in the Armijo rule is expensive). We refer to [2]
(Chapter 2) for further details on these rules.

Line search The line-search step consists of finding

α(k) = argmin
0≤α≤1

E
(
x(k) + αr(k)

)
, (87)

where r(k) = s(k) − x(k). The term E
(
x(k) + αr(k)

)
is

clearly a Dth-degree polynomial of α (recall that D is the
degree of the MRF), which we denote p(α). If we can deter-
mine the coefficients of p(α), then (87) can be solved effi-
ciently. In particular, if D ≤ 3 then (87) has simple closed-
form solutions (since the derivative of a 3rd-order polyno-
mial is a 2nd-order one, which has simple closed-form so-
lutions). For D > 3 we find that it is efficient enough to
perform an exhaustive search over the interval [0, 1] (with
some increment value δ) for the best value of α. In the im-
plementation we used δ = 0.0001.

Now let us describe how to find the coefficients of p(α).
For pairwise MRFs (i.e. D = 2), the energy is

Epairwise(x) =
∑
i∈V

F>i xi +
∑
ij∈E

x>i Fijxj , (88)

where E is the set of edges, and thus

p(α) = Epairwise(x + αr) (89)

=
∑
i∈V

F>i (xi + αri) +
∑
ij∈E

(xi + αri)
>Fij(xj + αrj)

(90)

=Aα2 +Bα+ C, (91)



where

A =
∑
ij∈E

r>i Fijrj (92)

B =
∑
i∈V

F>i ri +
∑
ij∈E

(
x>i Fijrj + r>i Fijxj

)
(93)

C = Epairwise(x). (94)

For higher-order MRFs, the analytical expressions of the
polynomial coefficients are very complicated. Instead, we
can find them numerically as follows. Since p(α) is a Dth-
degree polynomial, it hasD+1 coefficients, where the con-
stant coefficient is already known:

p(0) = E(x(k)). (95)

It remains D unknown coefficients, which can be computed
if we have D equations. Indeed, if we evaluate p(α) at D
different random values of α (which must be different than
0), then we obtain D linear equations whose variables are
the coefficients of p(α). Solving this system of linear equa-
tions we get the values of these coefficients. This procedure
requires D evaluations of the energy E

(
x(k) + αr(k)

)
, but

we find that it is efficient enough in practice.

B.2. Convex QP relaxation

This relaxation was presented in [19] for pairwise
MRFs (88). Define:

di(s) =
∑

j∈N (i)

∑
t∈Sj

1

2
|fij(s, t)| . (96)

Denote di = (di(s))s∈Si and Di = diag(di), the diagonal
matrix composed by di. The convex QP relaxation energy
is given by

Ecqp(x) = Epairwise(x)−
∑
i∈V

d>i xi +
∑
i∈V

x>i Dixi.

(97)

This convex energy can be minimized using different meth-
ods. Here we propose to solve it using Frank-Wolfe algo-
rithm, which has the guarantee to reach the global optimum.

Similarly to the previous nonconvex Frank-Wolfe algo-
rithm, the update step (85) can be solved using Lemma 1,
and the line-search has closed-form solutions:

Ecqp(x + αr) =Epairwise(x + αr)−
∑
i∈V

d>i (xi + αri)

+
∑
i∈V

(xi + αri)
>Di(xi + αri) (98)

=A′α2 +B′α+ C ′, (99)

where

A′ = A+
∑
i∈V

r>i Diri (100)

B′ = B +
∑
i∈V

(
−d>i ri + r>i Dixi + x>i Diri

)
(101)

C ′ = C +
∑
i∈V

(
−d>i xi + x>i Dixi

)
. (102)

B.3. ADMM

In this section, we give more details on the instantiation
of ADMM into different decompositions. As we have seen
in Section 4.2, there is an infinite number of such decompo-
sitions. Some examples include:

(cyclic) xd−1 = xd, d = 2, . . . , D, (103)

(star) x1 = xd, d = 2, . . . , D, (104)

(symmetric) xd = (x1 + · · ·+ xD)/D ∀d. (105)

Let us consider for example the cyclic decomposition. We
obtain the following problem, equivalent to (RLX):

min F (x1,x2, . . . ,xD)

s.t. xd−1 = xd, d = 2, . . . , D,

xd ∈ X d, d = 1, . . . , D,

(106)

where X 1, . . . ,XD are closed convex sets satisfying X 1 ∩
X 2 ∩ · · · ∩ XD = X , and F is defined by (20).

The augmented Lagrangian of this problem is:

Lρ(x
1, . . . ,xD,y) = F (x1, . . . ,xD)

+

D∑
d=2

〈
yd,xd−1 − xd

〉
+
ρ

2

D∑
d=2

∥∥xd−1 − xd
∥∥2
2
, (107)

where y = (y2, . . . ,yD). The y update (29) becomes

yd
(k+1)

= yd
(k)

+ ρ
(
xd−1

(k+1)

− xd
(k+1)

)
. (108)

Consider the x update (28). Plugging (31) into (107), ex-
panding and regrouping, we obtain that Lρ(x1, . . . ,xD,y)
is equal to each of the following expressions:
ρ

2

∥∥x1
∥∥2
2
−
〈
x1, ρx2 − y2 − p1

〉
+ cst(x1), (109)

ρ
∥∥xd∥∥2

2
−
〈
xd, ρxd−1 + ρxd+1 + yd − yd+1 − pd

〉
+ cst(xd) (2 ≤ d ≤ D − 1), (110)

ρ

2

∥∥xD∥∥2
2
−
〈
xD, ρxD−1 + yD − pD

〉
+ cst(xD).

(111)

From this, it is straightforward to see that the x up-
date (28) is reduced to (35) where (cd)1≤d≤D are defined
by (36), (37) and (38).

It is straightforward to obtain similar results for the other
decompositions.



(a) Ground-truth (b) α-Fusion (18582.85) (c) TRBP (18640.25) (d) AD3 (18763.13) (e) BUNDLE (20055.65)

(f) SRMP (18433.01) (g) BCD (18926.70) (h) FW (18776.26) (i) PGD (19060.17) (j) ADMM (18590.87)

Figure 2: Resulted disparity maps and energy values using second-order MRFs for the cones scene of the Middlebury stereo
dataset [21].

C. Details on the experiments
We replicated the model presented in [26] for the second-

order stereo experiment, with some simplifications: we only
used segmentation proposals (denoted by SegPln in [26])
and omitted the binary visibility variables and edges, so that
all the nodes have the same number of labels. We ran the
code provided by [26] to get the unary potentials as well
as the 14 proposals, and then built the MRF model using
OpenGM [1]. An example of resulted disparity maps for the
cones scene of the Middlebury stereo dataset [21] is given
in Figure 2.

For further details on the other modes, we refer to [10].
The detailed results of the experiments are provided at

the end of this document.



Table 4: inpainting-n4
inpainting-n4 FastPD α-Exp TRBP ADDD MPLP MPLP-C TRWS BUNDLE
triplepoint4-plain-ring-inverse value 424.90 424.12 475.95 482.23 508.94 453.17 496.37 425.90

bound 205.21 -Inf -Inf 402.83 339.29 411.48 411.59 411.87
runtime 0.03 0.02 33.04 28.59 1.75 3615.97 2.15 44.41

triplepoint4-plain-ring value 484.59 484.59 484.59 484.59 485.38 484.59 484.59 484.59
bound 384.57 -Inf -Inf 484.59 484.58 484.59 484.59 484.59
runtime 0.03 0.02 13.85 3.15 108.89 118.43 0.59 27.96

mean energy 454.75 454.35 480.27 483.41 497.16 468.88 467.70 455.25
mean bound 294.89 -Inf -Inf 443.71 411.94 448.03 448.09 448.23
mean runtime 0.03 0.02 23.45 15.87 55.32 1867.20 1.37 36.18
best value 50.00 100.00 50.00 50.00 0.00 50.00 50.00 50.00
best bound 0.00 0.00 0.00 50.00 0.00 0.00 50.00 50.00
verified opt 0.00 0.00 0.00 50.00 0.00 0.00 50.00 0.00

Table 5: inpainting-n4
inpainting-n4 CQP ADMM BCD FW PGD
triplepoint4-plain-ring-inverse value 2256.45 424.12 443.18 443.18 444.75

bound -Inf -Inf -Inf -Inf -Inf
runtime 2.60 7.69 0.11 1.05 0.77

triplepoint4-plain-ring value 542.57 484.59 528.57 533.29 534.86
bound -Inf -Inf -Inf -Inf -Inf
runtime 1.24 12.00 0.11 1.15 0.85

mean energy 490.09 454.35 485.88 488.23 489.80
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 1.92 9.84 0.11 1.10 0.81
best value 0.00 100.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00

Table 6: inpainting-n8
inpainting-n8 α-Exp FastPD TRBP ADDD MPLP MPLP-C BUNDLE TRWS
triplepoint4-plain-ring-inverse value 434.84 434.84 496.40 714.42 442.42 463.88 435.32 504.97

bound -Inf 0.00 -Inf 406.71 412.37 413.49 415.83 413.20
runtime 0.90 0.19 97.95 57.01 1107.98 3660.44 112.91 16.09

triplepoint4-plain-ring value 495.20 495.20 495.20 495.85 495.52 495.20 495.20 495.20
bound -Inf 272.56 -Inf 495.18 494.72 495.20 495.04 494.71
runtime 0.67 0.11 30.04 14.56 581.96 884.34 110.56 16.37

mean energy 465.02 465.02 494.02 605.14 468.83 469.78 465.26 466.80
mean bound -Inf 136.28 -Inf 450.95 453.55 454.35 455.43 453.96
mean runtime 0.78 0.15 64.00 35.78 844.97 2272.39 111.74 16.23
best value 50.00 50.00 50.00 0.00 0.00 50.00 50.00 50.00
best bound 0.00 0.00 0.00 0.00 0.00 50.00 50.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: inpainting-n8
inpainting-n8 CQP ADMM BCD FW PGD
triplepoint4-plain-ring-inverse value 1819.57 434.32 438.95 446.19 446.19

bound -Inf -Inf -Inf -Inf -Inf
runtime 20.78 38.71 0.31 6.33 6.55

triplepoint4-plain-ring value 538.25 495.20 524.94 533.45 533.45
bound -Inf -Inf -Inf -Inf -Inf
runtime 2.46 42.57 0.28 5.55 3.83

mean energy 489.82 464.76 481.95 489.82 489.82
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 11.62 40.64 0.29 5.94 5.19
best value 0.00 100.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00

Table 8: matching
matching TRBP ADDD MPLP MPLP-C BUNDLE TRWS CQP ADMM
matching0 value 60000000075.71 200000000047.27 90000000059.69 19.36 58.64 61.05 118.90 42.09

bound -Inf 11.56 10.96 19.36 11.27 11.02 -Inf -Inf
runtime 0.00 2.45 0.22 8.02 1.09 0.04 0.06 0.02

matching1 value 170000000090.50 70000000031.36 50000000030.34 23.58 10000000021.89 102.20 138.99 107.31
bound -Inf 20.13 18.47 23.58 17.48 18.52 -Inf -Inf
runtime 0.00 3.82 0.52 4.52 2.70 0.04 0.10 0.94



matching TRBP ADDD MPLP MPLP-C BUNDLE TRWS CQP ADMM
matching2 value 110000000096.00 20000000026.59 30000000025.18 26.08 20000000043.93 51.59 156.46 107.41

bound -Inf 22.97 21.07 26.08 19.87 21.18 -Inf -Inf
runtime 0.00 4.12 0.94 8.25 3.56 0.12 0.08 0.26

matching3 value 80000000066.03 130000000051.70 90000000051.81 15.86 10000000042.82 41.92 93.67 43.69
bound -Inf 10.72 10.15 15.86 9.25 10.14 -Inf -Inf
runtime 0.00 2.25 0.21 3.36 1.96 0.01 0.07 0.02

mean energy 97500000064.52 105000000039.23 65000000041.76 21.22 10000000041.82 63.52 127.01 75.12
mean bound -Inf 16.35 15.16 21.22 14.47 15.22 -Inf -Inf
mean runtime 0.00 3.16 0.47 6.04 2.33 0.05 0.08 0.31
best value 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

Table 9: matching
matching BCD FW PGD
matching0 value 43.61 56.10 49.45

bound -Inf -Inf -Inf
runtime 0.00 0.19 8.08

matching1 value 118.00 77.31 79.01
bound -Inf -Inf -Inf
runtime 0.00 23.66 21.36

matching2 value 139.74 89.46 62.40
bound -Inf -Inf -Inf
runtime 0.00 55.74 19.28

matching3 value 38.09 43.98 43.21
bound -Inf -Inf -Inf
runtime 0.00 0.81 4.11

mean energy 84.86 66.71 58.52
mean bound -Inf -Inf -Inf
mean runtime 0.00 20.10 13.21
best value 0.00 0.00 0.00
best bound 0.00 0.00 0.00
verified opt 0.00 0.00 0.00

Table 10: mrf-stereo
mrf-stereo FastPD α-Exp TRBP ADDD MPLP MPLP-C TRWS BUNDLE
ted-gm value 1344017.00 1343176.00 1460166.00 NaN NaN NaN 1346202.00 1563172.00

bound 395613.00 -Inf -Inf NaN NaN NaN 1337092.22 1334223.01
runtime 14.94 29.75 3616.74 NaN NaN NaN 391.34 3530.00

tsu-gm value 370825.00 370255.00 411157.00 455874.00 369304.00 369865.00 369279.00 369218.00
bound 31900.00 -Inf -Inf 299780.16 367001.47 366988.29 369217.58 369218.00
runtime 1.72 3.64 1985.50 1066.79 4781.02 4212.26 393.76 670.81

ven-gm value 3127923.00 3138157.00 3122190.00 NaN NaN NaN 3048404.00 3061733.00
bound 475665.00 -Inf -Inf NaN NaN NaN 3047929.95 3047785.37
runtime 4.76 10.87 2030.13 NaN NaN NaN 478.49 1917.58

mean energy 1614255.00 1617196.00 1664504.33 NaN NaN NaN 1587596.67 1664707.67
mean bound 301059.33 -Inf -Inf NaN NaN NaN 1584746.58 1583742.13
mean runtime 7.14 14.75 2544.12 NaN NaN NaN 421.20 2039.47
best value 0.00 33.33 0.00 0.00 0.00 0.00 33.33 33.33
best bound 0.00 0.00 0.00 0.00 0.00 0.00 66.67 33.33
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11: mrf-stereo
mrf-stereo CQP ADMM BCD FW PGD
ted-gm value 4195611.00 1373030.00 3436281.00 3020579.00 2694493.00

bound -Inf -Inf -Inf -Inf -Inf
runtime 3602.97 3628.80 15.64 1740.10 2109.65

tsu-gm value 3621062.00 375954.00 2722934.00 2352499.00 2114223.00
bound -Inf -Inf -Inf -Inf -Inf
runtime 3600.79 807.70 5.33 622.64 120.38

ven-gm value 26408665.00 3123334.00 14907352.00 13114176.00 10818561.00
bound -Inf -Inf -Inf -Inf -Inf
runtime 3602.28 2696.49 11.48 3604.63 2298.42

mean energy 11408446.00 1624106.00 7022189.00 6162418.00 5209092.33
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 3602.01 2377.66 10.82 1989.12 1509.49
best value 0.00 0.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00



Table 12: inclusion
inclusion α-Fusion TRBP ADDD MPLP MPLP-C BUNDLE SRMP ADMM
modelH-1-0.8-0.2 value 1595.06 1416.07 2416.58 3416.08 5415.89 5427.91 1415.94 1415.94

bound -Inf -Inf 1415.71 1415.70 1415.71 1406.09 1415.94 -Inf
runtime 0.06 21.93 10.52 12.17 3843.79 99.77 0.11 106.70

modelH-10-0.8-0.2 value 1590.97 1416.80 3415.92 5415.13 4415.43 5422.47 1416.10 1416.24
bound -Inf -Inf 1415.68 1415.62 1415.70 1404.47 1416.10 -Inf
runtime 0.05 22.66 1.20 12.03 3797.40 91.16 0.13 85.46

modelH-2-0.8-0.2 value 1603.85 1423.42 4423.49 6422.84 3423.03 5436.16 1422.89 1422.89
bound -Inf -Inf 1422.79 1422.78 1422.79 1411.56 1422.89 -Inf
runtime 0.05 21.34 10.00 6.67 4051.20 101.83 0.11 113.24

modelH-3-0.8-0.2 value 1596.11 1381.14 1381.14 1381.14 1381.14 4389.78 1381.14 1381.19
bound -Inf -Inf 1381.14 1381.14 1381.14 1371.29 1381.14 -Inf
runtime 0.06 8.02 4.50 7.79 8.84 112.52 0.11 63.51

modelH-4-0.8-0.2 value 1595.12 1427.56 5427.63 5426.48 3427.27 2432.97 1427.17 1427.17
bound -Inf -Inf 1426.58 1426.56 1426.58 1416.80 1427.17 -Inf
runtime 0.04 21.18 9.40 8.29 3892.65 116.38 0.13 125.01

modelH-5-0.8-0.2 value 1566.58 3383.89 6383.61 4383.52 6382.77 4390.47 1383.69 1383.77
bound -Inf -Inf 1383.25 1383.23 1383.30 1371.94 1383.69 -Inf
runtime 0.04 21.05 8.45 5.44 3902.54 112.86 0.18 99.08

modelH-6-0.8-0.2 value 1588.33 2402.30 2402.17 2402.60 5401.70 3406.27 1402.34 1402.60
bound -Inf -Inf 1402.01 1401.77 1402.01 1393.05 1402.34 -Inf
runtime 0.03 20.80 2.69 22.61 3778.21 101.74 0.11 126.40

modelH-7-0.8-0.2 value 1583.36 1403.61 3403.70 5402.97 5403.24 6418.08 1403.25 1403.69
bound -Inf -Inf 1403.08 1403.07 1403.08 1391.87 1403.25 -Inf
runtime 0.04 20.80 2.50 11.98 4124.95 103.95 0.15 94.36

modelH-8-0.8-0.2 value 1574.64 3368.65 3368.65 3368.66 1368.55 1368.33 1368.33 1368.33
bound -Inf -Inf 1368.29 1368.29 1368.33 1368.23 1368.33 -Inf
runtime 0.05 20.66 11.21 5.09 3740.80 92.39 0.15 86.69

modelH-9-0.8-0.2 value 1577.25 1385.00 1385.23 2385.04 3385.06 1384.86 1384.86 1384.95
bound -Inf -Inf 1384.82 1384.82 1384.82 1384.81 1384.86 -Inf
runtime 0.03 3.61 3.15 4.75 3824.62 82.98 0.11 73.29

mean energy 1587.13 1441.43 1694.72 3300.67 2800.54 4007.73 1400.57 1400.68
mean bound -Inf -Inf 1400.33 1400.30 1400.35 1392.01 1400.57 -Inf
mean runtime 0.05 18.20 6.36 9.68 3496.50 101.56 0.13 97.37
best value 0.00 10.00 10.00 10.00 10.00 20.00 100.00 40.00
best bound 0.00 0.00 10.00 0.00 0.00 0.00 100.00 0.00
verified opt 0.00 0.00 10.00 0.00 0.00 0.00 100.00 0.00

Table 13: inclusion
inclusion BCD FW PGD
modelH-1-0.8-0.2 value 12435.37 7419.38 7421.24

bound -Inf -Inf -Inf
runtime 0.14 44.22 67.47

modelH-10-0.8-0.2 value 15446.57 7427.81 5424.26
bound -Inf -Inf -Inf
runtime 0.14 2.76 16.90

modelH-2-0.8-0.2 value 10430.00 5425.92 5425.74
bound -Inf -Inf -Inf
runtime 0.14 11.55 57.53

modelH-3-0.8-0.2 value 15397.00 1382.80 1382.23
bound -Inf -Inf -Inf
runtime 0.14 20.57 19.35

modelH-4-0.8-0.2 value 15447.30 4427.73 4427.66
bound -Inf -Inf -Inf
runtime 0.13 8.25 109.47

modelH-5-0.8-0.2 value 9391.02 6385.98 6385.44
bound -Inf -Inf -Inf
runtime 0.13 6.26 32.41

modelH-6-0.8-0.2 value 13420.27 5407.69 3403.83
bound -Inf -Inf -Inf
runtime 0.14 36.05 24.21

modelH-7-0.8-0.2 value 11438.71 10411.17 11498.09
bound -Inf -Inf -Inf
runtime 0.13 18.45 72.97

modelH-8-0.8-0.2 value 14385.72 6376.91 6375.75
bound -Inf -Inf -Inf
runtime 0.14 35.24 80.66

modelH-9-0.8-0.2 value 7393.92 3386.31 3385.93
bound -Inf -Inf -Inf
runtime 0.14 28.90 29.45

mean energy 12518.59 5805.17 5513.02
mean bound -Inf -Inf -Inf
mean runtime 0.14 21.23 51.04
best value 0.00 0.00 0.00
best bound 0.00 0.00 0.00



inclusion BCD FW PGD
verified opt 0.00 0.00 0.00

Table 14: stereo
stereo α-Fusion TRBP ADDD MPLP MPLP-C BUNDLE SRMP ADMM
art small value 13262.49 13336.35 13543.70 NaN NaN 15105.28 13091.20 13297.79

bound -Inf -Inf 12925.76 NaN NaN 12178.62 13069.30 -Inf
runtime 50.99 3744.91 3096.10 NaN NaN 3845.89 3603.89 3710.92

cones small value 18582.85 18640.25 18763.13 NaN NaN 20055.65 18433.01 18590.87
bound -Inf -Inf 18334.00 NaN NaN 17724.56 18414.29 -Inf
runtime 48.89 3660.77 7506.15 NaN NaN 3814.74 3603.11 3659.15

teddy small value 14653.53 14680.21 14804.46 NaN NaN 15733.15 14528.74 14715.83
bound -Inf -Inf 14374.12 NaN NaN 13981.71 14518.03 -Inf
runtime 50.99 3670.35 3535.79 NaN NaN 3820.05 3603.49 3620.84

venus small value 9644.78 9692.80 9796.44 NaN NaN 9990.68 9606.34 9669.62
bound -Inf -Inf 9377.05 NaN NaN 9402.97 9601.86 -Inf
runtime 49.24 3627.58 3761.29 NaN NaN 3774.66 3603.14 3657.60

mean energy 14035.91 14087.40 14226.93 NaN NaN 15221.19 13914.82 14068.53
mean bound -Inf -Inf 13752.73 NaN NaN 13321.96 13900.87 -Inf
mean runtime 50.03 3675.90 4474.83 NaN NaN 3813.84 3603.41 3662.13
best value 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 15: stereo
stereo BCD FW PGD
art small value 13896.67 13696.50 13929.06

bound -Inf -Inf -Inf
runtime 60.63 1407.07 3648.00

cones small value 18926.70 18776.26 19060.17
bound -Inf -Inf -Inf
runtime 57.40 2111.63 3669.24

teddy small value 14998.31 14891.12 15193.23
bound -Inf -Inf -Inf
runtime 60.08 1626.66 3671.59

venus small value 9767.21 9726.27 9992.13
bound -Inf -Inf -Inf
runtime 60.27 1851.40 3670.82

mean energy 14397.22 14272.54 14543.65
mean bound -Inf -Inf -Inf
mean runtime 59.59 1749.19 3664.92
best value 0.00 0.00 0.00
best bound 0.00 0.00 0.00
verified opt 0.00 0.00 0.00


