
Deep Image Prior
Supplementary Material

In this supplemental material we provide more de-
tails about the setup in each experiment. We also ex-
tend the figures from the main paper with more qualita-
tive comparisons. The code for all experiments is pub-
lished at https://github.com/DmitryUlyanov/
deep-image-prior. Interactive comparisons are avail-
able at the project page https://dmitryulyanov.
github.io/deep_image_prior.

1. Architectures
In general we found that deep architectures without too

many short paths from input to output define very good deep
priors. Having too many short paths prevent learning reg-
ular image patterns, resulting in memorization at the pixel
level and deficient image priors.

While other options are possible, we mainly experi-
mented with fully-convolutional architectures, where the in-
put z ∈ RC′×W×H has the same spatial resolution as the the
output of the network fθ(z) ∈ R3×W×H .

We use encoder-decoder (“hourglass”) architecture (pos-
sibly with skip-connections) for fθ in all our experiments
except noted otherwise (fig. 1), varying small number of hy-
perparameters. Although the best results can be achieved by
carefully tuning an architecture for a particular task (and po-
tentially for a particular image), we found that wide range of
hyperparameters and architectures give acceptable results.

We use LeakyReLU [4] as a non-linearity. As a down-
sampling technique we simply use strides implemented
within convolution modules. We also tried average/max
pooling and downsampling with Lanczos kernel, but did not
find a consistent difference between any of them. As an up-
sampling operation we choose between bilinear upsampling
and nearest neighbour upsampling. An alternative upsam-
pling method could be to use transposed convolutions, but
the results we obtained using them were worse. We use re-
flection padding instead of zero padding in convolution lay-
ers everywhere except for the feature inversion experiment.

We considered two ways to create the input z: 1. ran-
dom, where the z is filled with uniform noise between zero
and 0.1, 2. meshgrid, where we initialize z ∈ R2×W×H us-
ing np.meshgrid (see fig. 2). Such initialization serves
as an additional smoothness prior to the one imposed by the

structure of fθ itself. We found such input to be beneficial
for large-hole inpainting, but not for other tasks.

During fitting of the networks we sometimes use a noise-
based regularization. I.e. at each iteration we perturb the in-
put z with an additive normal noise. While we have found
such regularization to impede optimization process, we also
observed that the network was able to optimize its objective
to zero no matter the variance of the additive noise (i.e. the
network was always able to adapt to any reasonable vari-
ance for sufficiently large number of optimization steps).

We found the optimization process tends to destabilize as
the loss goes down and approaches a certain value. Destabi-
lization is observed as significant loss increase and the blur
in generated image fθ(z). From such destabilization point
the loss goes down again till destabilized one more time. To
remedy this issue we simply track the optimization loss and
return to parameters from the previous iteration if the loss
difference between two consecutive iterations is higher than
a certain threshold.

Finally, we use ADAM optimizer [5] in all our experi-
ments. All experiments are implemented in PyTorch.

Below, we provide the remaining details of the network
architectures. We use the notation introduced in fig. 1.

After that, a large number of additional experimental re-
sults are provided. Electronic zoom-in is recommended for
almost all figures.

Super-resolution (fig. 1 and 5 of main paper) (default
architecture).

z ∈ R32×W×H ∼ U(0, 1
10 )

nu = nd = [128, 128, 128, 128, 128]
ku = kd = [3, 3, 3, 3, 3]
ns = [4, 4, 4, 4, 4]
ks = [1, 1, 1, 1, 1]
σp =

1
30

num iter = 2000
LR = 0.01
upsampling = bilinear

The decimation operator d is composed of low pass fil-
tering operation using Lanczos2 kernel (see [9]) and re-
sampling, all implemented as a single (fixed) convolutional
layer.

1

https://github.com/DmitryUlyanov/deep-image-prior
https://github.com/DmitryUlyanov/deep-image-prior
https://dmitryulyanov.github.io/deep_image_prior
https://dmitryulyanov.github.io/deep_image_prior


�✁✂✄✁✂

☎✆✝✞

✟✠✄✁✂

✝

✡☛ ✡☞
✌ ✌ ✌

✡✍

✎☛ ✎☞ ✎✍

✌ ✌ ✌

✏☛ ✏☞ ✏✍✌ ✌ ✌

Figure 1: The architecture used in the experiments. We use “hourglass” (also known as “decoder-encoder”) architecture.
We sometimes add skip connections (yellow arrows). nu[i], nd[i], ns[i] correspond to the number of filters at depth i for
the upsampling, downsampling and skip-connections respectively. The values ku[i], kd[i], ks[i] correspond to the respective
kernel sizes.

Figure 2: “Meshgrid” input z used in some inpainting ex-
periments. These are two channels of the input tensor; in
BCWH layout: z[0, 0, :, :], z[0, 1, :, :]
The intensity encodes the value: from zero (black) to one
(white). Such type of input can be regarded as a part of the
prior which enforces smoothness.

For 8x super-resolution (9) we have changed the stan-
dard deviation of the input noise to σp = 1

20 and the number
of iterations to 4000.

Text inpainting (fig. 7 top row of main paper). We
used the same hyperparameters as for super-resolution but
optimized the objective for 6000 iterations.

Large hole inpainting (fig. 6 of main paper). We used
the same hyperparameters as for super-resolution, but used
meshgrid as an input, removed skip connections and op-
timized for 5000 iterations.

Large hole inpainting (fig. 8 of main paper). We used
the following hyperparameters:

z ∈ R32×W×H ∼ U(0, 1
10 )

nu = nd = [16, 32, 64, 128, 128, 128]
kd = [3, 3, 3, 3, 3, 3]
ku = [5, 5, 5, 5, 5, 5]
ns = [0, 0, 0, 0, 0, 0]
ks = [NA, NA, NA, NA, NA, NA]
σp = 0
num iter = 5000
LR = 0.1
upsampling = nearest

In figures 8(c) and 8(d) we simply sliced off last layers
to get smaller depth.

Denoising. Hyperparameters were set to be the same
as in the case of super-resolution with only difference in
iteration number, which was set to 1800. We used the fol-
lowing implementations of referenced denoising methods:
[6] for CBM3D and [1] for NLM. We used exponential
sliding window with weight γ = 0.99. JPEG artifacts
removal (fig. 3). Although we could use the same setup
as in other denoising experiments, the hyperparameters we
used to generate the image in figure 3 were the following:
z ∈ R3×W×H ∼ U(0, 1

10 )
nu = nd = [8, 16, 32, 64, 128]
ku = kd = [3, 3, 3, 3, 3]
ns = [0, 0, 0, 4, 4]
ks = [NA, NA, NA, 1, 1]
σp =

1
30

num iter = 2400
LR = 0.01
upsampling = bilinear

2



Image reconstruction (fig. 7 bottom). We used the
same setup as in the case of superresolution and denoising,
but set num iter = 11000, LR = 0.001. Alexnet
inversion.

z ∈ R32×W×H ∼ U(0, 1
10 )

nu = nd = [16, 32, 64, 128, 128, 128]
ku = kd = [7, 7, 5, 5, 3, 3]
ns = [4, 4, 4, 4, 4]
ks = [1, 1, 1, 1, 1]
num iter = 3100
LR = 0.001
upsampling = nearest

We used num iter = 10000 for the VGG inversion
experiment (14)

References
[1] A. Buades. NLM demo. http://demo.ipol.im/

demo/bcm_non_local_means_denoising/. 2
[2] A. Dosovitskiy and T. Brox. Inverting convolutional networks

with convolutional networks. In Proc. CVPR, 2016. 12
[3] D. Glasner, S. Bagon, and M. Irani. Super-resolution from

a single image. In ICCV, pages 349–356. IEEE Computer
Society, 2009. 6, 7, 8

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into recti-
fiers: Surpassing human-level performance on imagenet clas-
sification. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1026–1034, 2015. 1

[5] D. P. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014. 1

[6] M. Lebrun. BM3D code. https://github.com/
gfacciol/bm3d. 2

[7] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. In Proc. CVPR, 2015. 12,
13

[8] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 13

[9] K. Turkowski. Filters for common resampling-tasks. Graph-
ics gems, pages 147–165, 1990. 1

3

http://demo.ipol.im/demo/bcm_non_local_means_denoising/
http://demo.ipol.im/demo/bcm_non_local_means_denoising/
https://github.com/gfacciol/bm3d
https://github.com/gfacciol/bm3d


Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman Lenna Man Monarch Pepper Ppt3 Zebra

No prior 22.24 24.89 23.94 24.62 21.06 29.99 23.75 29.01 28.23 24.84 25.76 28.74 20.26 21.69
Bicubic 22.44 25.15 24.47 25.53 21.59 31.34 25.33 29.45 29.84 25.7 27.45 30.63 21.78 24.01
TV prior 22.34 24.78 24.46 25.78 21.95 31.34 25.91 30.63 29.76 25.94 28.46 31.32 22.75 24.52
Glasner et al. 22.44 25.38 24.73 25.38 21.98 31.09 25.54 30.4 30.48 26.33 28.22 32.02 22.16 24.34
Ours 22.29 25.53 24.38 25.81 22.18 31.02 26.14 31.66 30.83 26.09 29.98 32.08 24.38 25.71

SRResNet-MSE 23.0 26.08 25.52 26.31 23.44 32.71 28.13 33.8 32.42 27.43 32.85 34.28 26.56 26.95
LapSRN 22.83 25.69 25.36 26.21 22.9 32.62 27.54 33.59 31.98 27.27 31.62 33.88 25.36 26.98

Table 1: Detailed super-resolution PSNR comparison on Set14 dataset with factor 4x. Note that our method does not aim to
maximize PSNR.

Baboon Barbara Bridge Coastguard Comic Face Flowers Foreman Lenna Man Monarch Pepper Ppt3 Zebra

No prior 21.09 23.04 21.78 23.63 18.65 27.84 21.05 25.62 25.42 22.54 22.91 25.34 18.15 18.85
Bicubic 21.28 23.44 22.24 23.65 19.25 28.79 22.06 25.37 26.27 23.06 23.18 26.55 18.62 19.59
TV prior 21.3 23.72 22.3 23.82 19.5 28.84 22.5 26.07 26.74 23.53 23.71 27.56 19.34 19.89
SelfExSR 21.37 23.9 22.28 24.17 19.79 29.48 22.93 27.01 27.72 23.83 24.02 28.63 20.09 20.25

Ours 21.38 23.94 22.2 24.21 19.86 29.52 22.86 27.87 27.93 23.57 24.86 29.18 20.12 20.62
LapSRN 21.51 24.21 22.77 24.1 20.06 29.85 23.31 28.13 28.22 24.2 24.97 29.22 20.13 20.28

Table 2: Detailed super-resolution PSNR comparison on Set14 dataset with factor 8x.

Baby Bird Butterfly Head Woman

No prior 30.16 27.67 19.82 29.98 25.18
Bicubic 31.78 30.2 22.13 31.34 26.75
TV prior 31.21 30.43 24.38 31.34 26.93
Glasner et al. 32.24 31.1 22.36 31.69 26.85
Ours 31.49 31.8 26.23 31.04 28.93

LapSRN 33.55 33.76 27.28 32.62 30.72
SRResNet-MSE 33.66 35.1 28.41 32.73 30.6

Table 3: Detailed super-resolution PSNR comparison on Set5 dataset with factor 4x.

Baby Bird Butterfly Head Woman

No prior 26.28 24.03 17.64 27.94 21.37
Bicubic 27.28 25.28 17.74 28.82 22.74
TV prior 27.93 25.82 18.4 28.87 23.36
SelfExSR 28.45 26.48 18.8 29.36 24.05
Ours 28.28 27.09 20.02 29.55 24.5

LapSRN 28.88 27.1 19.97 29.76 24.79

Table 4: Detailed super-resolution PSNR comparison on Set5 dataset with factor 8x.

4



(a) Image (b) Image + noise (c) Image shuffled (d) U(0, 1) noise

Figure 3: Images used in fig. 2 of the main paper to demonstrate the noise impedance effect.

(a) HR image (b) Bicubic upsampling (c) No prior (d) TV prior (e) Deep image prior

Figure 4: Prior effect in super-resolution. (c):Direct optimization of data term E(x;x0) with respect to the pixels leads to
ringing artifacts. TV prior removes ringing artifacts but introduces cartoon effect. Deep prior leads to the result that is both
clean and sharp.

Figure 5: Inpainting diversity. Left: original image (black pixels indicate holes). The remaining four images show results
obtained using deep prior corresponding to different input vectors z.

5



(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) Glasner [3], Not trained (e) SRResNet, Trained

Figure 6: 4x image super-resolution. Comparison on the Set5 dataset. In our experiments we center cropped the images to
make spatial dimensions divisible by 32 (resulting in the black frames in the plots that can be removed with more sophisticated
padding schemes).

6



(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) Glasner [3], Not trained (e) SRResNet, Trained

Figure 7: 4x image super-resolution. Comparison on the Set14 dataset. Part 1.

7



(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) Glasner [3], Not trained (e) SRResNet, Trained

Figure 8: 4x image super-resolution. Comparison on the Set14 dataset. Part 2.

8



(a) Original image (b) Bicubic, Not trained (c) Ours, Not trained (d) LapSRN, trained (e) VDSR, Trained

Figure 9: 8x image super-resolution. Comparison on the Set5 dataset.

9



(a) Original image (b) Noisy image (c) Ours (d) CBM3D (e) Non-local means

Figure 10: Denoising, σ = 25.

10



(a) Original image (b) Noisy image (c) Ours (d) CBM3D

(e) Original image (f) Noisy image (g) Ours (h) CBM3D

Figure 11: Denoising results on the standard benchmark set, σ = 50.

11



(a) Original (b) Corrupted (c) Voronoi diagram (d) Hourglass
bilinear upsampling

(e) Hourglass
nearest upsampling

(f) U-Net (g) ResNet

0 200 400 600 800 1000
Iteration

10−5

10−4

10−3

10−2

10−1

Lo
ss

(b)
(c)
(d)
(e)

(h) Loss/MSE curves for the top row (2% pixels known)

0 200 400 600 800 1000
Iteration

10−6

10−5

10−4

10−3

10−2

10−1

Lo
ss

(b)
(c)
(d)
(e)

(i) Loss/MSE curves for the bottom row (0.5% pixels known)

Figure 12: Reconstruction using small number of pixels. We reconstruct ‘Kate’ image from 2% and 0.05% of pixels in
the first and the second rows respectively. Different architectures lead to different inpainting results, yet each converges to
a local minima of the data term (dashed line). Solid line shows MSE error of the generated image compared to the original
image.

Image conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

Inversion with deep image prior

Inversion with TV prior [7]

Pre-trained deep inverting network [2]

Figure 13: Inversion of AlexNet activations at different layers with different priors (see main text for the discussion of
the problem).

12



Image conv1 1 conv1 2 conv2 1 conv2 2 conv3 1 conv3 2 conv3 3 conv3 4 conv4 1

Inversion with deep image prior

Inversion with TV prior [7]

conv4 2 conv4 3 conv4 4 conv5 1 conv5 2 conv5 3 conv5 4 fc6 fc7 fc8

Inversion with deep image prior

Inversion with TV prior [7]

Figure 14: Inversion of VGG-19 [8] network activations at different layers with different priors (see main text for the discus-
sion of the problem).

13


