
Supplementary Material
From source to target and back: Symmetric Bi-Directional Adaptive GAN

Paolo Russo1,2, Fabio M. Carlucci1,2, Tatiana Tommasi2 and Barbara Caputo1,2

1Department DIAG, Sapienza University of Rome, Italy
2Italian Institute of Technology

{Paolo.Russo, Fabio.Carlucci, Tatiana.Tommasi, Barbara.Caputo}@iit.it

1. SBADA-GAN network architecture
We composed SBADA-GAN starting from two sym-

metric GANs, each with an architecture analogous to that
used for the PixelDA model. Specifically:

• the generators take the form of a convolutional residual
network with four residual blocks each composed by
two convolutional layers with 64 features;

• the input noise z is a vector of Nz elements each
sampled from a normal distribution zi ∼ N (0, 1). It is
fed to a fully connected layer which transforms it to a
channel of the same resolution as that of the image, and
is subsequently concatenated to the input as an extra
channel. In all our experiments we used Nz = 5;

• the discriminators are made of two convolutional lay-
ers, followed by an average pooling and a convolution
that brings the discriminator output to a single scalar
value;

• in both generator and discriminator networks, each
convolution (with the exception of the last one of the
generator) is followed by a batch norm layer [4];

• the classifiers have exactly the same structure of that
in [1, 2];

• as activation functions we used ReLU in the generator
and classifier, while we used leaky ReLU (with a 0.2
slope) in the discriminator;

• all the input images to the generators are zero-centered
and rescaled to [−0.5, 0.5]. The images produced by
the generators as well as the other input images to the
classifiers and and the discriminators are zero-centered
and rescaled to [−127.5, 127.5].

Thanks to the stability of the SBADA-GAN training pro-
tocol, we did not use any injected noise into the discrimi-
nators and we did not use any dropout layer.

2. More Implementation Details
The training batch: with “batch size = 32” we mean

that 32 samples are randomly chosen from the source
as well as from the target. The model works fine with
different batch size values (e.g. 16,64).

Update policy for yjtself and Cs: the classifier Cs is
first trained using only source images. After convergence,
it is used to produce yjtself .The target images annotated
with these pseudo-labels contribute as input to Cs as
follows (iterated): the associated self-labeling loss is used
to provide feedback to Gts, but it does not contribute to
the update of Cs. Similarly the class consistency loss
does not contribute to the update of Cs, but only to that
of Gst and Gts. yjtself can change as Cs is still trained at
each iteration.
Cs,Ct combination: the performance ofCt is already

good and better than several baselines. The improvement
provided by Cs is evident even when the two classifiers
are integrated with fixed weights (e.g. σ = 0.3 or 0.5),
thus a detailed search for the weights values is not strictly
necessary. Anyway we did it by exploiting only a subset
of the target samples, as [4] did to select their model
parameters.

3. Self-Labeling
Self-labeling may appear as an unsafe procedure in

case of large domain shift between source and target.
To understand the low risk provided by self-labeling in
SBADAGAN we remark that both the classifiers Cs and
Ct are trained on source images with ground truth labels.
Gst is influenced and regularized by both these classi-
fiers so that it is highly unlikely that a source image is
deformed and appears as belonging to a different cate-
gory. Gts is slightly weaker as it deals with unlabeled
target images, but it is helped by the class consistency
loss that minimizes variations inducing possible category

1



flips. When the classifier Cs is applied on the images
produced by Gts, only the samples annotated with the
highest confidence are kept as pseudo-labeled samples.
Hence, the probability of a wrong pseudo-label is negli-
gible and even if a sample is mis-labeled in this phase,
its impact on the final performance is not significant, as
shown by of our ablation study.

4. Experimental Settings
MNIST→MNIST-M: MNIST has 60k images for
training. As [1] we divided it into 50k samples for actual
training and 10k for validation. All the 60k images from
the MNIST-M training set were considered as test set. A
subset of 1k images and their labels were also used to
validate the classifier combination weights at test time.

USPS→MNIST: USPS has 6, 562 training, 729 vali-
dation, and 2, 007 test images. All of them were resized
to 28 × 28 pixels. The 60k training images of MNIST
were considered as test set, with 1k samples and their
labels also used for validation purposes.

MNIST→ USPS: even in this case MNIST training im-
ages were divided into 50k samples for actual training
and 10k for validation. We tested on the whole set of
9, 298 images of USPS. Out of them, 1k USPS images
and their labels were also used for validation.

SVHN→MNIST: SVHN contains over 600k color im-
ages of which 73, 257 samples are used for training and
26, 032 for validation while the remaining data are some-
what less difficult samples. We disregarded this last set
and considered only the first two. The 60k MNIST train-
ing samples were considered as test set, with 1k MNIST
images and their labels also used for validation.

MNIST→ SVHN: for MNIST we used again the
50k/10k training/validation sets. The whole set of
99, 289 SVHN samples was considered for testing with
1k images and their labels also used for validation.

Synth Signs→ GTSRB: the Synth Signs dataset con-
tains 100k images, out of which 90k were used for train-
ing and 10k for validation. The model was tested on
the whole GTSRB dataset containing 51, 839 samples
resized with bilinear interpolation to match the Synth
Signs images’ size of 40 × 40 pixels. Similarly to the
previous cases, 1k GTSRB images and their labels were
considered for validation purposes.

5. Distribution Visualizations
To visualize the original data distributions and their

respective transformations we used t-SNE [5]. The im-

(a) MNIST-M to MNIST (b) MNIST to MNIST-M

Figure 1: t-SNE visualization of source, target and source
mapped to target images. Note how the mapped source
covers faithfully the target space in all the settings.

Figure 2: Behaviour of the SBADA-GAN and DAass

methods when changing their loss weights. (left) for
SBADA-GAN we kept α = γ = 1 and η = 1, while
we varied alternatively the weights of the classification
losses β, µ with β = µ and keeping ν = 1, or the weight
of the class consistency loss ν while fixing β = µ = 10.
(right) for the DAass method we changed the weight of
the walker loss β1 while keeping that of the visit loss
β2 = 0.1, or alternatively we changed the weight of the
visit loss β2 while fixing that of the walker loss β1 = 1.

ages were pre-processed by scaling in [−1, 1] and we
applied PCA for dimensionality reduction from vectors
with Width×Height elements to 64 elements. Finally t-
SNE with default parameters was applied to project data
to a 2-dimensional space.

The behavior shown by the t-SNE data visualization
presented in the main paper extends also for the other
experimental settings. We integrate here the visualization
for the MNIST→MNIST-M case in Figure 1. The plots
show again a successful mapping with the generated data
that cover faithfully the target space.

6. Robustness experiments

The experiments about SBADA-GAN robustness to
hyperparameters values are described at high level in Sec-
tion 4.5 of the main paper submission. Here we report on
the detailed results obtained on Synth. Signs→ GTSRB
when using SBADA-GAN and the DAass method [3].

For SBADA-GAN we keep fixed the weights of the



discriminative losses α = γ = 1 as well as that of self-
labeling η = 1, while we varied alternatively the weights
of the classification losses β, µ or the weight of the class
consistency loss ν in [0.1, 1, 10]. The results plotted
in Figure 2 (left) show that the classification accuracy
changes less than 0.2 percentage point. Furthermore, we
used a batch size of 32 for our experiments and when
reducing it to 16 the overall accuracy remains almost
unchanged (from 96.7 to 96.5).

DAass proposes to minimize the difference between
the source and target by maximizing the associative sim-
ilarity across domains. This is based on the two-step
round-trip probability of an imaginary random walker
starting from a sample (xsi , yi) of the source domain,
passing through an unlabeled sample of the target do-
main (xtj) and and returning to another source sample
(xsk, yk = yi) belonging to the same class of the initial
one. This is formalized by first assuming that all the cate-
gories have equal probability both in source and in target,
and then measuring the difference between the uniform
distribution and the two-step probability through the so
called walker loss. To avoid that only few target samples
are visited multiple times, a second visit loss measures
the difference between the uniform distribution and the
probability of visiting some target samples. We tested the
robustness of DAass by using the code provided by its
authors and changing the loss weights β1 for the walker
loss and β2 for the visit loss in the same range used for
the SBADA-GAN: [0.1 1 10]. Figure 2 (right) shows that
DAass is particularly sensitive to modifications of the
visit loss weights which can cause a drop in performance
of more than 16 percentage points. Moreover, the model
assumption about the class balance sounds too strict for
realistic scenarios: in practice DAass needs every ob-
served data batch to contain an equal number of samples
from each category and reducing the number of samples
from 24 to 12 per category causes a drop in performance
of more than 4 percentage points from 96.3 to 92.8.

To conclude, although GAN methods are generally
considered unstable and difficult to train, SBADA-GAN
results much more robust than a not-GAN approach like
DAass to the loss weights hyperparameters and can be
trained with small random batches of data while not los-
ing its high accuracy performance.

References

[1] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and
D. Krishnan. Unsupervised pixel-level domain adaptation
with gans. In Computer Vision and Pattern Recognition
(CVPR), 2017. 1, 2

[2] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain,
H. Larochelle, F. Laviolette, M. Marchand, and V. Lem-
pitsky. Domain-adversarial training of neural networks. J.
Mach. Learn. Res., 17(1):2096–2030, 2016. 1

[3] P. Haeusser, T. Frerix, A. Mordvintsev, and D. Cremers. As-
sociative domain adaptation. In International Conference
on Computer Vision (ICCV), 2017. 2

[4] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, pages
448–456, 2015. 1

[5] L. v. d. Maaten and G. Hinton. Visualizing data using t-
sne. Journal of Machine Learning Research, 9(Nov):2579–
2605, 2008. 2


