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In the supplementary material below, we present an abla-
tion study of the components of our method (section 1). In
section 2, we also provide details of the weakly supervised
method that produced the bounding box annotations used to
train our model.

1. Ablation studies

In addition to the results reported in sections 4.2. and
4.3. of the paper, we report additional ablation experiments
that validate the contribution of the proposed components
of our method.

In order to show the improvements over the base ar-
chitecture that was used to initialize our network, we also
compare against the resSc features from the version of the
pretrained ResNet-50 model, the filters of which were di-
lated as explained in section 3.6. in the paper (ResNet-50-
dilated).

Furthermore, to provide an extended comparison with
alternative matching loss formulations, a flavour of our
method, abbreviated as Contrastive, implements the con-
trastive loss formulation from [2].

We also test three more methods that assess the sensitiv-
ity of the proposed approach to the utilized dataset. We
include results for our method trained with ground truth
bounding box labels (Ours-GTbox), rather than the weakly
supervised detections used in the original formulation, to
enable an assessment of the method’s robustness to the us-
age of imperfect bounding box annotations. Another varia-
tion of our method, Ours-NObox, does not use any bound-
ing box annotations. Finally, Ours-nonrigid uses all 20
PASCAL categories for training as opposed to the original
training setup that used images of the 12 rigid classes.

All variants were evaluated on both the semantic match-
ing and keypoint prediction tasks. The results of the seman-
tic matching experiments are reported in fig. 1 while fig. 2

* Authors contributed equally.

Samuel Albanie®

Andrea Vedaldi!

2Computer Vision Group
Naver Labs Europe
diane.larlus@naverlabs.com

Diane Larlus?

Ours [0.502] ==
—-=- Ours-nonrigid [0.479] ’_/";’./" P
0.8 Ours-GTbox [0.483] /-’:_/"'
Contrastive [0.427] .
| |====Ours-NObox [0.454] //;/‘
, 0.6¢ ResNet-50-dilated [0.395]| /22~
o 7
8 [
"7
0.4+ 7
0"
@
&
0.2+ &
y
,/
0 =, . , . )
0 0.1 0.2 0.3 0.4 0.5

IoU threshold
Figure 1. Ablation study on PF-Pascal. The region matching
performance of several variants of our method (see section 1 for
details of each variant).
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Figure 2. Ablation study on the few-shot keypoint detection
task on Pascal3D. We report the area under the PCK-over-alpha
curve as a function of the number of training annotations for sev-
eral variants of our method. For details of each variant see sec-
tion 1.

contains the results of the few-shot keypoint prediction task.
The results indicate that for both semantic matching and
keypoint detection the performance of the ground-truth su-
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Figure 3. Region matching examples for pairs of motorbike (top) and duck (bottom) images. From left to right: source and target images,
HOG with NAM matching [4], ours, SCNet-A [5]. We show correctly matched boxes, color-coded according to matching score (red:

higher, blue: lower).

pervised setup is on par with the proposed weakly super-
vised setup. This shows that, with the inclusion of the prob-
abilistic introspection mechanism, the method has good
robustness to annotation noise. The performance of our
method trained with the non-rigid categories is on par with
the rigid case for proposal matching. We observe a decrease
in performance for the keypoint detection task. This is be-
cause the few-shot detection dataset consists of only rigid
classes and adding the non-rigid ones to the training set
makes the features less specialized for the final task. The
variant which trains features via the contrastive loss gives
lower performance.

1.1. Keypoint detection - detector validation

In section 4.3. in the paper, we reported results for a
keypoint detector with a design closely related to that of
[6]. In order to validate the implementation of the detec-
tor, we provide a comparison against the results of the fully
supervised detector from [6]. When using all available an-
notations and the Resnet-50-HC descriptors, the mean PCK
(o = 0.1) over the 12 rigid classes of the Pascal3D test set
is 54.7. This is on par with the best single-model result from
[6] (53.3 PCK), validating our keypoint predictor as a rep-
resentative proxy for evaluating the quality of our feature
baselines.

2. Weakly supervised detections

Here we give details of the weakly supervised detector
used to provide bounding box annotations for our method,
as discussed in Sec. 3.6 of the paper. We use the vgg—-£-
based model described in [ 1], which is trained using Edge-
Box proposals[7] and the image-level labels of the Pascal
VOC 2007 detection dataset [3]. To produce bounding box
predictions for the ImageNet dataset, we follow the multi-
scale evaluation technique described in [1], averaging pre-
dictions over five scales and flipped copies of each scale.
To form our training set, we then select top scoring box for
each class label present in the image. In order to maintain
a high quality of box annotation, we do not include boxes

whose scores fall below the median detector score of the
given class (the median is computed after filtering scores
which fall below the noise score threshold of 0.001 given in
the public implementation' of [17).

3. Qualitative results

Additional qualitative results for the semantic matching
task ok PF-Pascal are present in fig. 3. We show the match-
ing regions for two example pairs, for the method of [4],
ours, and the fully-supervised method of SCNet-A.
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