
Smooth Neighbors on Teacher Graphs for Semi-supervised Learning
Supplementary Material

Yucen Luo1 Jun Zhu1∗ Mengxi Li2 Yong Ren1 Bo Zhang1

1 Dept. of Comp. Sci. & Tech., State Key Lab for Intell. Tech. & Sys., BNRist Lab, Tsinghua University
2 Department of Electronical Engineering, Tsinghua University

{luoyc15, limq14, renyong15}@mails.tsinghua.edu.cn; {dcszj, dcszb}@tsinghua.edu.cn

Table 1: The network architecture used in all experiments.

Input: 32× 32× 3 image (28× 28× 1 for MNIST)
Gaussian noise σ = 0.15
3× 3 conv. 128 lReLU (α = 0.1) same padding
3× 3 conv. 128 lReLU (α = 0.1) same padding
3× 3 conv. 128 lReLU (α = 0.1) same padding
2× 2 max-pool, dropout 0.5
3× 3 conv. 256 lReLU (α = 0.1) same padding
3× 3 conv. 256 lReLU (α = 0.1) same padding
3× 3 conv. 256 lReLU (α = 0.1) same padding
2× 2 max-pool, dropout 0.5
3× 3 conv. 512 lReLU (α = 0.1) valid padding
1× 1 conv. 256 lReLU (α = 0.1)
1× 1 conv. 128 lReLU (α = 0.1)
Global average pool 6× 6 (5× 5 for MNIST)→ 1×1
Fully connected 128→ 10 softmax

A. Experimental setup
MNIST. It contains 60,000 gray-scale training images

and 10,000 test images from handwritten digits 0 to 9. The
input images are normalized to zero mean and unit variance.

SVHN. Each example in SVHN is a 32× 32 color house-
number images and we only use the official 73,257 training
images and 26,032 test images following previous work.
The augmentation of SVHN is limited to random translation
between [−2, 2] pixels.

CIFAR-10. The CIFAR-10 dataset consists of 32 × 32
natural RGB images from 10 classes such as airplanes, cats,
cars and horses. We have 50,000 training examples and
10,000 test examples. The input images are normalized using
ZCA following previous work [7]. We use the standard way
of augmenting the CIFAR-10 dataset including horizontal
flips and random translations.

CIFAR-100. The CIFAR-100 dataset consists of 32× 32
natural RGB images from 100 classes. We have 50,000 train-

∗Corresponding author.

ing examples and 10,000 test examples. The preprocession
of inputs images are the same to CIFAR-10.

Implementation. We implemented our code mainly in
Python with Theano [14] and Lasagne [4]. For compari-
son with VAT [9] and Mean Teacher [13] experiments, we
use TensorFlow [1] to match their settings. The code for
reproducing the results is available at https://github.
com/xinmei9322/SNTG.

Training details. In Π model and TempEns based exper-
iments, the network architectures (shown in Table 1) and the
hyper-parameters are the same as our baselines [7]. We apply
mean-only batch normalization with momentum 0.999 [11]
to all layers and use leaky ReLU [8] with α = 0.1. The
network is trained for 300 epochs using Adam Optimizer [6]
with mini-batches of size n = 100 and maximum learn-
ing rate 0.003 (exceptions are that TempEns for SVHN
uses 0.001 and MNIST uses 0.0001). We use the default
Adam momentum parameters β1 = 0.9 and β2 = 0.999.
Following [7], we also ramp up the learning rate and the
regularization term during the first 80 epochs with weight
w(t) = exp

[
−5(1− t

80 )2
]

and ramp down the learning
rate during the last 50 epochs. The ramp-down function is
exp

[
−12.5(1− 300−t

50 )2
]
. The regularization coefficient of

consistency loss RC is λ1 = 100 for Π model and λ1 = 30
for TempEns (exception is that SVHN with L = 250 uses
λ1 = 50).

For comparison with Mean Teacher and VAT, we keep
the same architecture and hyper-parameters settings with the
corresponding baselines [13, 9]. Their network architectures
are the same as shown in Table 1 but differ in several hyper-
parameters such as weight normalization, training epochs
and mini-batch sizes, which are detailed in their papers. We
just add the SNTG loss along with their regularization RC
and keep other settings unchanged as in their public code.

In all our experiments, the marginm inRS is set tom = 1
if we treat ‖h(xi)− h(xj)‖2 as a distance averaged by the
feature dimension p. We sample half the number of mini-
batch size pairs of (xi, xj) for computing `G, e.g., s = 50
for mini-batch size n = 100. The regularization coefficient

https://github.com/xinmei9322/SNTG
https://github.com/xinmei9322/SNTG


Table 2: Comparision of error rates on MNIST with 600 labels between various classifcal SSL methods.

Methods LGC TSVM LapRLS LP LP+kNN DLP EmbedNN MTC PEA SNTG (ours)

Error (%) 3.96 4.87 2.92 8.57 4.27 2.01 3.42 5.13 2.44 0.45

λ2 of SNTG loss RS is set to λ2 = kλ1 where k is the ratio
of λ2 to λ1 (i.e., the regularization coefficient of consistency
loss RC). k is chosen from {0.2, 0.4, 0.6, 1.0} using the
validation set and we use k = 0.4 for most experiments by
default.

Training time. SNTG does not increase the number of
neural network parameters and the runtime is almost the
same to the baselines, with only extra 1-2 seconds per epoch
(the baselines usually need 100-200 seconds per epoch on
one GPU).

Synthetic benchmarks. The synthetic dataset experi-
ments adopt the default settings for Π model [7] except for
0.001 maximum learning rate and 500 training epochs. We
use weight normalization [11] and add Gaussian noise to
each layer.

B. Rethinking Π model objective

In Π model [7], the consistency loss is defined in Eq. (2)
where the teacher model shares the same parameter with
the student model θ′ = θ. Suppose f(x) ∈ [0, 1]K , the
consistency loss of Π model is

RC(θ,L,U) =

N∑
i=1

Eξ′,ξ‖f(xi; θ, ξ
′)− f(xi; θ, ξ)‖2,

ξ′ and ξ are i.i.d random noise variables, ξ′, ξ ∼
p(ξ), then we have Eξf(xi; θ, ξ) = Eξ′f(xi; θ, ξ

′) and
Eξ‖f(xi; θ, ξ)‖2 = Eξ′‖f(xi; θ, ξ

′)‖2

RC = 2

N∑
i=1

Eξ‖f(xi; θ, ξ)‖2 − ‖Eξf(xi; θ, ξ)‖2

= 2

N∑
i=1

K∑
k=1

Varξ [f(xi; θ, ξ)]k

where [·]k is k-th component of the vector.
Then minimizingRC is equivalent to minimizing the sum

of variance of the prediction each dimension. Similar idea
of variance penalty was exploited in Pseudo-Ensemble [2].
If a data point is near the decision boundary, it is likely to
has a large variance since its prediction might alternate to
another class when some noise is added. Minimizing the
variance explicitly penalizes such alternation behavior of
training data.

C. Comparison to classical SSL methods
As mentioned in Section 2, our method is different from

classical graph-based SSL methods in many important as-
pects such as the construction of the graph and how to use
it.

Table 2 is a comparion with several classical methods:
(1) Label propagation (LP) [18]; (2) A variant of LP on
kNN structure(LP+kNN) [12]; (3) Local and Global Con-
sistency (LGC) [17]; (5) Transductive SVM (TSVM) [5];
(6) LapRLS [3]; (7) Dynamic Label propagation (DLP) [15].
The results of (1)-(7) are cited from [15]. We also com-
pare with the best reported results in previously mentioned
works: (8) EmbedNN [16]; (9) the Manifold Tangent Classi-
fier (MTC) [10]; (10) Pseudo-Ensemble [2].

While the classical graph-based methods (e.g., LP, DLP
and LapRLS) were the leading paradigms, with the resur-
gence of deep learning, recent impressive results are mostly
from deep learning based SSL methods, while classical meth-
ods fall behind on performance and scalability. Furthermore,
they have no reported results on challenging natural im-
age datasets, e.g., SVHN, CIFAR-10. Only one overlap
is MNIST, see Table 2 for comparison. We show that our
method SNTG surpasses these classical methods by a large
margin.

D. Significance test of the improvements.
Table 3 shows the independent two sample T-test on the

error rates of baselines and our method. All the P-values are
less than significance level α = 0.01. It indicates that the
improvements of SNTG are significant.

Table 3: T-test. The top rows are the experiments without
augmentation and the bottom rows are with augmentation.

Datasets & Methods T-statistic P-value

MNIST (L=20) Π model v.s. Π+SNTG 20.00227 9.07043e-09
MNIST (L=100) Π model v.s. Π+SNTG 4.34867 0.000387026
SVHN (L=1000) VAT+Ent v.s. VAT+Ent+SNTG 4.08627 0.002732236
CIFAR-10 (L=4000) VAT+Ent v.s. VAT+Ent+SNTG 5.90681 0.000227148

SVHN (L=250) Π model v.s. Π+SNTG 12.31365 3.32742e-10
SVHN (L=500) TempEns v.s. TempEns+SNTG 7.52909 3.58188e-05
CIFAR-10 (L=1000) TempEns v.s. TempEns+SNTG 12.81875 1.73155e-10
CIFAR-10 (L=2000) TempEns v.s. TempEns+SNTG 11.80608 6.55694e-10
CIFAR-10 (L=4000) VAT+Ent v.s. VAT+Ent+SNTG 5.81409 0.000254937

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al.



Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] P. Bachman, O. Alsharif, and D. Precup. Learning with
pseudo-ensembles. In Advances in Neural Information Pro-
cessing Systems, pages 3365–3373, 2014.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regulariza-
tion: A geometric framework for learning from labeled and
unlabeled examples. Journal of Machine Learning Research,
7(Nov):2399–2434, 2006.

[4] S. Dieleman, J. Schlter, C. Raffel, E. Olson, S. K. Snderby,
D. Nouri, et al. Lasagne: First release., Aug. 2015.

[5] T. Joachims. Transductive inference for text classification
using support vector machines. In Proceedings of the Inter-
national Conference on Machine Learning, pages 200–209,
1999.

[6] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[7] S. Laine and T. Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.

[8] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlineari-
ties improve neural network acoustic models. In Proceedings
of the 30th International Conference on Machine Learning
(ICML-13), 2013.

[9] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual ad-
versarial training: a regularization method for supervised and
semi-supervised learning. arXiv preprint arXiv:1704.03976,
2017.

[10] S. Rifai, Y. N. Dauphin, P. Vincent, Y. Bengio, and X. Muller.
The manifold tangent classifier. In Advances in Neural Infor-
mation Processing Systems, pages 2294–2302, 2011.

[11] T. Salimans and D. P. Kingma. Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural
networks. In Advances in Neural Information Processing
Systems, pages 901–909, 2016.

[12] A. Subramanya, S. Petrov, and F. Pereira. Efficient graph-
based semi-supervised learning of structured tagging models.
In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pages 167–176. Association
for Computational Linguistics, 2010.

[13] A. Tarvainen and H. Valpola. Mean teachers are better role
models: Weight-averaged consistency targets improve semi-
supervised deep learning results. In Advances in neural infor-
mation processing systems, pages 1195–1204, 2017.

[14] Theano Development Team. Theano: A Python framework
for fast computation of mathematical expressions. arXiv e-
prints, abs/1605.02688, May 2016.

[15] B. Wang, Z. Tu, and J. K. Tsotsos. Dynamic label propagation
for semi-supervised multi-class multi-label classification. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 425–432, 2013.

[16] J. Weston, F. Ratle, and R. Collobert. Deep learning via
semi-supervised embedding. In Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML-08), pages
1168–1175, 2008.

[17] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with local and global consistency. In Advances
in Neural Information Processing Systems, pages 321–328,
2004.

[18] X. Zhu and Z. Ghahramani. Learning from labeled and un-
labeled data with label propagation. Technical Report CMU-
CALD-02-107, Carnegie Mellon University, 2002.


