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1. Elaboration of the derivation of h
Sec. 3.4 in the main paper describes the derivation of the

feature function h. In this section, we provide an elabora-
tion of the derivation. Here, we refer to the equations from
the main paper with an m, e.g., (15m).

The goal of Sec. 3.4 is to transform the update ∆x into a
form that we can learn with (13m). The main idea is to set
∆x as the negative gradient of J(x̃) in (16m), then factor-
ize it into two terms: D which contains the unknown, i.e.,
the information about ψ; and h which contains all known
information, i.e., the information about the point clouds at
the current estimate. We elaborate this step, i.e., from (17m)
to (23m), as follows.

First, let us recall (17m), where we look at the update
due to a single term (i, j). Here, we refer to ‖gij(06;x)‖ as
zij ∈ R:

∆xij = −wijϕ(zij). (1)

Notice that ϕ(zij) is a scalar. Since we know the values of
zij and wij but not ϕ (as it depends on the unknown ψ), we
need to separate them. This is done by expressing ϕ(zij) as
the inner product between ϕ and Dirac delta function δ:

∆xij = −wij

∫
V

ϕ(v)δ(v − zij)dv, (2)

which is (18m). Looking at a single element l of ∆xij , we
arrive at (19m):

[∆xij ]l = −
∫
V

ϕ(v) ([wij ]lδ(v − zij)) dv. (3)

We now see that the unknown ϕ is separated from the
known [wij ]l and zij . In addition, the integral (3) can
be thought of as an inner product between −ϕ(v) and
[wij ]lδ(v − zij) over the space V = R, which is simi-
lar to [Dh]l, the inner product between h and row l of D.
However, (3) is an inner product between functions over a
continuous domain, unlike [Dh]l which is an inner product
between vectors. So in order to represent (3) as an inner
product between vectors, we discretize ϕ and δ into vec-
tor forms: ϕ is discretized into a vector ϕ; and δ to a dis-
cretized delta function, which is similar to a standard basis
vector eβ . However, we cannot discretize the whole space
V = R. Thus, we only discretize the range [0, r] ⊂ V into
q boxes (note that zij = ‖gij(06;x)‖ can only be a non-
negative number, thus we do not need to discretize the neg-
ative side of V ). In order to compute the index of the vector
that zij discretizes to, we define a discretization function
γ : R→ {0, 1, . . . , q} as

γ (y) =

{
dye, y ∈ [0, q]

0 otherwise,
(4)

where d·e rounds up a number. With γ, we can express the
discretized (3) as (20m):

[∆xij ]l ≈ −ϕ>[wij ]leγ( q
r zij)

, (5)

where we define e0 = 0q . Note that since any zij outside
(0, r] will have γ( qr zij) = 0, which leads to eγ( q

r zij)
= 0q ,

those zij will be disregarded from the computation of h.
From here, we assemble [∆xij ]l over i, j, l back to ∆x:

∆x =

NM∑
i=1

NS∑
j=1

∆xij (6)

≈
NM∑
i=1

NS∑
j=1

 −ϕ
>[wij ]1eγ( q

r zij)

...
−ϕ>[wij ]6eγ( q

r zij)

 (7)



=

NM∑
i=1

NS∑
j=1

 −ϕ
> · · · 0>

q
...

. . .
...

0>
q · · · −ϕ>


 [wij ]1eγ( q

r zij)

...
[wij ]6eγ( q

r zij)


(8)

=
(
−I6 ⊗ϕ>)NM∑

i=1

NS∑
j=1

6⊕
l=1

[wij ]leγ( q
r zij)

 (9)

= Dhr,q(x; θ), (10)

where⊗ is the Kronecker product, and
⊕

is vector concate-
nation. This expression allows us to use h (derived from the
known information about the point clouds) as a feature for
learning the map D (derived from the unknown ϕ) such that
Dh approximates the update step ∆x (the negative gradient
of the unknown cost J).

2. Additional Experiments
In this section, we provide an additional results on the

ETH laser registration dataset [1]. In the main text, we pro-
vide the results for consecutive scans. Here, we consider
registration for pairs of scans that are 2 steps apart (a total
of 518 pairs). The cumulative plots for the registration er-
ror are shown in Fig. 1. We can see that ICDO can register
more accurately that the baseline algorithms. In this case,
the average computation times are 0.07s for ICP, 0.55s for
IRLS, 2.08s for CPD, 18.93s for GMR, and 2.88s for ICDO.
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Figure 1. Results of ETH laser registration dataset (2 steps apart)
in cumulative plots. (Left) Absolute registration error. (Right)
Relative registration error.

3. Analysis on the Effect of Parameters
In this section, we look at the effect of the parameters

of ICDO on the synthetic experiments and the ETH laser
registration dataset [1]. We inspect 5 parameters: (i) regres-
sion parameter λ; (ii) number of boxes q; (iii) number of
maps T ; (iv) discretization range r; and (v) rate for range
reduction α. We follow the same training and test protocols
as in the main paper, but we reduce the training samples to
2.5 × 104. For synthetic data, we only show the effect of

the parameter on the success rate and computation time of
different initial angles, where a total of 200 pairs were used
to test each setting. For ETH dataset, we only show the
absolute registration error. The experiments here were run
on a server machine with AMD Opteron Processor 6378,
2400MHz, 128GB RAM.

Summary: We found that ICDO is not so sensitive to the
regression parameter λ and number of discretization boxes
q, while it can be rather sensitive to the discretization range
r, the number of maps T , and the rate for range reduction
α. While synthetic data and ETH dataset prefer different
sets of parameters, there exists a common set of parame-
ters which perform well on both datasets (and also the Stan-
ford’s dragon) as reported in the main paper.

The detail of the results are provided in the following
figures (explanations are provided in the caption):

• Regression parameter λ: Fig 2.

• Number of boxes q: Fig 3.

• Number of maps T : Fig 4.

• Discretization range r: Fig 5.

• Rate of range reduction α: Fig 6.

4. Visualization of Results
In this section, we provide some visualization of the re-

sults from the main paper in Fig. 7 and 8. Column 1 shows
the scenes in the initial configuration and the models. In
column 2, we visualize the registration error between the
scenes in the initial pose and the scenes in the ground truth
pose. Column 3 shows the registered scenes with the mod-
els. Finally, column 4 visualizes the registration error be-
tween the registered scenes and the scene in the ground truth
poses.
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Figure 2. Effect of the regression parameter λ. (a) Results on synthetic data’s initial angles in terms of success rate and time. (b) Results
on ETH dataset (right subfigure shows a zoom of the left subfigure). We can see that λ has quite a small effect on the success rate and the
error, except for λ = 10−6 where the success rate in (a)-left is much lower, and the error in (b) is much higher than other λ’s. In terms of
computational time in (a)-right, we see that larger λ’s require much less computational time than smaller λ’s.
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Figure 3. Effect of the number of boxes q. (a) Results on synthetic data’s initial angles in terms of success rate and time. (b) Results on
ETH dataset (right subfigure shows a zoom of the left subfigure). We can see that q has an almost insignificant effect on both the error and
time. This illustrates that ICDO is rather insensitive to the number of boxes used in discretization.
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Figure 4. Effect of the number of maps T . (a) Results on synthetic data’s initial angles in terms of success rate and time. (b) Results
on ETH dataset (right subfigure shows a zoom of the left subfigure). We can see in (a)-left that using a small T leads to more success
registration. On the other hand, in (b), the best T should not be too low or too high. In terms of computation time in (a)-right, a small T
requires more time than a large T .
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Figure 5. Effect of the discretization range r. (a) Results on synthetic data’s initial angles in terms of success rate and time. (b) Results on
ETH dataset (right subfigure shows a zoom of the left subfigure). We can see that in (a), a larger r increases success rates for large initial
angles while also increases computation time. On the other hand, for ETH dataset in (b), we can see that the optimal r is 3, but other values
also perform quite well.
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Figure 6. Effect of the rate of range reduction α. (a) Results on synthetic data’s initial angles in terms of success rate and time. (b) Results
on ETH dataset (right subfigure shows a zoom of the left subfigure). We can see that α has quite a strong effect on the result. For synthetic
data in (a)-left, using a small α gives a significantly better success rate, while it also significantly increases computation time, as shown in
(a)-right. For ETH dataset, setting α to 1.15 gives a much better result than others.
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Synthetic data (Wolf - 60° initial angle)

Synthetic data (Centaur - 45% of the points removed from scene)

Synthetic data (Gun - 80% outlier)
Outliers removed from columns 2 and 4 for visualization

Stanford's dragon (Scans at 0° and 288°)  
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Figure 7. Visualization of results.
Column 1: Input to ICDO (Model (blue) and Scene in initial pose (red)).
Column 2: Initial error (Scene in ground truth pose (green) and Scene in initial pose (red). Gray lines are point-wise registration errors.)
Column 3: Registration result (Model (blue) and Scene in registered pose (red)).
Column 4: Final registration error (Scene in ground truth pose (green) and Scene in registered pose (red). Gray lines are point-wise
registration errors.)
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Figure 8. Visualization of results.
Column 1: Input to ICDO (Model (blue) and Scene in initial pose (red)).
Column 2: Initial error (Scene in ground truth pose (green) and Scene in initial pose (red). Gray lines are point-wise registration errors.)
Column 3: Registration result (Model (blue) and Scene in registered pose (red)).
Column 4: Final registration error (Scene in ground truth pose (green) and Scene in registered pose (red). Gray lines are point-wise
registration errors.)


