
Transparency by Design: Closing the Gap Between Performance and
Interpretability in Visual Reasoning

Supplementary Material

1. Module Details

Here we describe each module in detail and provide mo-
tivation for specific architectural choices. In all descrip-
tions, ‘image features’ refer to features that have been ex-
tracted using a pretrained model [1] and passed through our
stem network, which is shared across modules. In all the
following tables, δ(·) will indicate a rectified linear func-
tion and σ(·) will indicate a sigmoid activation. The input
size R×C indicates R rows and C columns in the input. In
our original model, R = C = 14, while our high-resolution
model uses R = C = 28.

The architecture of the Attention modules can be
seen in Table 1. These modules take stem features and an
attention mask as input and produce an attention mask as
output. We first perform an elementwise multiplication of
the input features and attention mask, broadcasting the at-
tention mask along the channel dimension of the input fea-
tures. We refer to this process as ‘attending to’ the features.
We then process the attended features with two 3x3 convo-
lutions, each with 128 filters and a ReLU, then use a single
1x1 convolution followed by a sigmoid to project down to
an attention mask. This architecture is motivated by the de-
sign of the unary module from Johnson et al. [3].

The And and Or modules, seen in Table 2 and Table 3,
respectively, perform set intersection and union operations.
These modules return the elementwise minimum and max-
imum, respectively, of two input attention masks. This is
motivated by the logical operations that Hu et al. [2] im-

Table 1. Architecture of an Attention module, which takes as
input Features and an Attention and produces an Attention.

Index Layer Output Size

(1) Features 128×R× C
(2) Previous module output 1×R× C
(3) Elementwise multiply (1) and (2) 128×R× C
(4) δ(Conv(3× 3, 128→ 128)) 128×R× C
(5) δ(Conv(3× 3, 128→ 128)) 128×R× C
(6) σ(Conv(1× 1, 128→ 1)) 1×R× C

Table 2. Architecture of an And module. This module receives as
input two Attentions and produces an Attention.

Index Layer Output Size

(1) Previous module output 1×R× C
(2) Previous module output 1×R× C
(3) Elementwise minimum (1) and (2) 1×R× C

Table 3. Architecture of an Or module. This module receives as
input two Attentions and produces an Attention.

Index Layer Output Size

(1) Previous module output 1×R× C
(2) Previous module output 1×R× C
(3) Elementwise maximum (1) and (2) 1×R× C

plement, which seems a natural expression of these opera-
tions. Such simple and straightforward operations need not
be learned, since they can be effectively and efficiently im-
plemented by hand.

The Relate module, shown in Table 4, needs global
context to shift attention across an entire image. Motivated
by this, we use a series of dilated 3x3 convolutions, with
dilation factors 1, 2, 4, 8, and 1, to expand the receptive
field to the entire image. The choice of dilation factors is
informed by the work of Yu and Koltun [4]. These modules
receive stem features and an attention mask and produce
an attention mask. Each convolution in the series has 128
filters and is followed by a ReLU. A final convolution then
reduces the feature map to a single-channel attention mask,
and a sigmoid nonlinearity is applied.

The Same module is the most complex of our modules,
and the most complex operation we perform. To illustrate
this, consider the Same[shape] module. It must deter-
mine the shape of the attended object, compare that shape
with the shape of every other object in the scene (which
requires global information propagation), and attend to all
the objects that share that shape. Initially, we used a design
similar to the Relate module to perform this operation,
but found it did not perform well. After further reflection,
we posited this was because the Relate module does not
have a mechanism for remembering which object we are



Table 4. Architecture of a Relate module. These modules re-
ceive as input Features and an Attention and produce an Attention.

Index Layer Output Size

(1) Features 128×R× C
(2) Previous module output 1×R× C
(3) Elementwise multiply (1) and (2) 128×R× C
(4) δ(Conv(3× 3, 128→ 128, dilate 1)) 128×R× C
(5) δ(Conv(3× 3, 128→ 128, dilate 2)) 128×R× C
(6) δ(Conv(3× 3, 128→ 128, dilate 4)) 128×R× C
(7) δ(Conv(3× 3, 128→ 128, dilate 8)) 128×R× C
(8) δ(Conv(3× 3, 128→ 128, dilate 1)) 128×R× C
(9) σ(Conv(1× 1, 128→ 1)) 1×R× C

interested in performing the Same with respect to. Table 5
provides an overview of the Same module. Here we ex-
plicate the notation. Provided with stem features and an
attention mask as input, we take the argmax of the fea-
ture map, spatially. This gives us the (x, y) position of the
object of interest (i.e. the object to perform the Same with
respect to). We then extract the feature vector at this spatial
location in the input feature map, which gives us the vector
encoding the property of interest (among other properties).
Next, we perform an elementwise multiplication with the
feature vector at every spatial dimension. This essentially
performs a cross-correlation of the feature vector of interest
with the feature vector of every other position in the image.
Our intuition is that the vector dimensions that encode the
property of interest will be ‘hot’ at every point sharing that
property with the object of interest. At this point, a convo-
lution could be learned that attends to the relevant regions.
However, the Same operation, by its definition in CLEVR,
must not attend to the original object. That is, an object is
by definition not the same property as itself. Therefore, the
Samemodule must learn not to attend to the original object.
We thus concatenate the original input attention mask with
the cross-correlated feature map, allowing the convolutional
filter to know which object was the original, and thus ignore
it.

Table 5. Architecture of a Same module. These modules receive
as input Features and an Attention and produce an Attention.

Index Layer Output Size

(1) Features 128×R× C
(2) Previous module output 1×R× C
(3) argmaxx,y(2) 1× 1× 1
(4) (1)(3) 128× 1× 1
(5) Elementwise multiply (1) and (4) 128×R× C
(6) Concatenate (5) and (2) 129×R× C
(7) σ(Conv(1× 1, 129→ 1)) 1×R× C

The Query module architecture can be seen in Table 6.

Table 6. Architecture of a Query module. These modules receive
as input Features and an Attention and produce an Encoding.

Index Layer Output Size

(1) Features 128×R× C
(2) Previous module output 1×R× C
(3) Elementwise multiply (1) and (2) 128×R× C
(4) δ(Conv(3× 3, 128→ 128)) 128×R× C
(5) δ(Conv(3× 3, 128→ 128)) 128×R× C

Table 7. Architecture of a Compare module. These modules re-
ceive as input two Features and produce an Encoding.

Index Layer Output Size

(1) Previous module output 128×R× C
(2) Previous module output 128×R× C
(3) Concatenate (1) and (2) 128×R× C
(4) δ(Conv(1× 1, 128→ 128)) 128×R× C
(5) δ(Conv(3× 3, 128→ 128)) 128×R× C
(6) δ(Conv(3× 3, 128→ 128)) 128×R× C

Its design is similar to that of the Attentionmodules and
is likewise inspired by the unary module design of Johnson
et al. [3] and adapted for receiving an attention mask and
stem features as input. These modules produce a feature
map as output, and thus do not have a convolutional filter
that performs a down-projection.

The Compare module, shown in Table 7, is inspired by
the binary module of Johnson et al. [3]. These modules
take two feature maps as input and produce a feature map
as output. Their purpose is to determine whether the two
input feature maps encode the same property.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. CoRR, abs/1512.03385, 2015.
[2] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.

Learning to reason: End-to-end module networks for visual
question answering. CoRR, abs/1704.05526, 2017.

[3] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman,
L. Fei-Fei, C. L. Zitnick, and R. Girshick. Inferring and
executing programs for visual reasoning. arXiv preprint
arXiv:1705.03633, 2017.

[4] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In ICLR, 2016.


