
Supplementary Material: Sliced Wasserstein Distance for Learning Gaussian Mixture Models

Soheil Kolouri
HRL Laboratories, LLC

skolouri@hrl.com

Gustavo K. Rohde
University of Virginia
gustavo@virginia.edu

Heiko Hoffmann
HRL Laboratories, LLC

hhoffmann@hrl.com

7. Supplementary material

7.1. Maximum log-likelihood and KL-divergence

The KL-divergence between Ix and Iy is defined as:

KL(Ix, Iy) =

∫
Rd

Iy(ρ)log(
Iy(ρ)

Ix(ρ)
)dρ

For the maximum log-likelihood and in the limit and as the
number of samples grows to infinity, N →∞, we have:

lim
N→∞

argmax
µk,Σk,αk

1

N

N∑
n=1

log(Ix(yn)) =

argmax
µk,Σk,αk

∫
Rd

Iy(ρ)log(Ix(ρ))dρ =

argmin
µk,Σk,αk

−
∫
Rd

Iy(ρ)log(Ix(ρ))dρ =

argmin
µk,Σk,αk

∫
Rd

Iy(ρ)log(Iy(ρ))dρ−∫
Rd

Iy(ρ)log(Ix(ρ))dρ =

argmin
µk,Σk,αk

∫
Rd

Iy(ρ)log(
Iy(ρ)

Ix(ρ)
)dρ =

argmin
µk,Σk,αk

KL(Ix, Iy)

7.2. RMSProp update equations

SGD often suffers from oscillatory behavior across the
slopes of a ravine while only making incremental progress
towards the optimal point. Various momentum based meth-
ods have been introduced to adaptively change the learning
rate of SGD and dampen this oscillatory behavior. In our
work, we used RMSProp, introduced by Tieleman and Hin-
ton [2], which is a momentum based technique for SGD. Let
α be the learning rate, γ ∈ (0, 1) be the decay parameter,
and κ be the momentum parameter. The update equation for
a GMM parameter, here µk, is then calculated from:



m
(i)
k = γm

(i−1)
k + (1− γ)

∂SWp
p (Ix,Iy)

∂µk

g
(i)
k = γg

(i−1)
k + (1− γ)(

∂SWp
p (Ix,Iy)

∂µk
)2

v
(i)
k = κv

(i−1)
k − α√

g
(i)
k −(mi

k)2+ε

∂SWp
p (Ix,Iy)

∂µk

µ
(i)
k = µ

(i−1)
k + v

(i)
k

(1)

Where mk and gk are the first and second moments
(uncentered variance) of ∂SW p

p (Ix, Iy)/∂µk, respectively.
Similar update equations hold for Σk and αk.

7.3. Number of required slices

Regarding the growing number of required projec-
tions/slices, following the mini-batch learning literature, we
first point out that the proposed algorithm is guaranteed to
converge to a local optima for any fixed number of random
projections, L (of course at different convergence rates).
Here, we devise an experiment to show the convergence
behavior of our algorithm for different number of random
projections, L, and at different dimensions, d. To do so, we,
we learn GMMs for data generated from mixture-models at
different dimensions, d, and show the number of iterations
to convergence for different Ls (See Figure 7). Specifi-
cally, we generated a mixture of three Gaussian distributions
with covariances equal to identity in d-dimensions where
d ∈ {2, 3, ..., 10}. At each d, we learn a GMM using our
SWGMM technique with L = 1, L = 5, and L = 10 num-
ber of projections and repeat the experiment 10 times. The
mean and variance of the log number of iterations needed
for convergence are depicted in Figure 7.

7.4. Experimental Details

Here we provide the detailed implementation and archi-
tecture of the adversarial autoencoders we used in our paper.
Figure 9 shows the detailed architectures of the deep adver-
sarial autoencoder for MNIST and CelebA datasets. The
architecture of the deep binary classifiers used for scoring



Figure 7. Log number of iterations to convergence for different
number of random projections, L, and at different dimensions, d.

the fitness of the GMMs are shown in Figure 8. We used
Keras [1] for implementation of our experiments.

For the loss function of the autoencoder we used the mean
absolute error between the input image and the decoded im-
age together with the adversarial loss of the decoded image
(equally weighted). The loss functions for training the adver-
sarial networks and the binary classifiers were chosen to be
cross entropy. Finally, we used RMSProp [2] as the default
optimizer for all the models, and trained the models over
100 Epochs, with batch size of 250.

7.5. CelebA Generated Images

Figure 10 shows all the GMM components learned by
EM and our SWM formulation.

References
[1] F. Chollet et al. Keras. https://github.com/

fchollet/keras, 2015. 2
[2] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magnitude.
COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012. 1, 2

https://github.com/fchollet/keras
https://github.com/fchollet/keras


Figure 8. Details of the convolutional autoencoders learned for the MNIST and CelebA face dataset



Figure 9. Details of the deep binary classifiers used for scoring the fitness of GMMs.

(a)

(b)
Figure 10. GMM Samples Generated from the GMM learned from EM-GMM (a), and from SW-GMM (b). Each column depicts random
samples from a single component of the GMM.


