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We present a discussion on embedding and visualizing
multiple tasks using the FSIC similarity measure, along with
additional experimental results including the regression per-
formance on two regression benchmark datasets (RF1 and
ENB described in the main paper) as well as adaptations
of Pentina et al.’s curriculum learning approach (Sec. 2) to
ranking and regression settings . We reproduce some content
of the main paper to make this supplemental self-contained.

1. Task embedding and visualization
Suppose we have an empirical estimate matrix F ∈RN×T

storing evaluations of multiple task estimators {f1,...,fT}
on N data points {x1, ... ,xN}: [F ]i,j = fj(xi). The
corresponding normalized FSIC matrix is defined as

[Φ(F)]i,j= ‖ûij‖2
‖ûii‖‖ûjj‖ , (1)

ûij= (Ki◦Kj)1
N−1 − (Ki1)◦(Kj1)

N(N−1) , (2)

where ◦ denotes element-wise product, 1=[1,...,1]>, and
[Ki](j,k) =ki(qij,[F ]k,i) for the test locations {qij}100

j=1 of the
i-th task. We use a Gaussian kernel ki that guarantees the
consistency of individual FSIC estimators ûij:

ki(f,g)=exp
(
−‖f−g‖

2

(σik)
2

)
, (3)

with a parameter σik>0.
Each entry in the FSIC matrix Φ(F ) is bounded in [0,1]

and it can be considered as a measure of similarity between
estimators f i and fj as data points in an N-dimensional
space: Inspecting Eq. 2 reveals that, evaluated at columns
of F , the empirical FSIC estimate û constitutes a positive
definite kernel and, therefore, it induces a distance measure
on RN . This facilitates embedding individual estimations
into a graph where the graph Laplacian L is constructed
based on the kernel matrix Φ(F). Using the graph
Laplacian, one could embed all tasks into a low-dimensional
visualization space.

Figure 1 shows the results of two-dimensional embedding
of 312 tasks in the Birds dataset which provides 11,788

bird images of 200 bird species provided with 312 binary
attribute annotations. Each input image is represented
based on 1000-dimensional VGG19 features. The embed-
ding is performed based on the FSIC matrix Φ(F) of the
independently trained rank SVM estimates F . First, the
normalized graph Laplacian L = I −D−1/2WD−1/2 is
calculated from the weight matrix W :

[W ]i,j=exp
(
−1−[Φ(F)]i,j

σ2
w

)
, (4)

with D being a diagonal matrix storing the column sum of
W : [D]i,j=

∑
j[W ]i,j and σ2

w is fixed at 5. Thereafter, two
dimensional embedding coordinates [[E]i,1,[E]i,2] of the i-th
attribute are calculated by combining the two eigenvectors
e1 and e2 of L corresponding to two smallest non-zero
eigenvalues λ1 and λ2, respectively:

E=[e1,e2]. (5)

Visualizing task dependence helps us to un-
derstand the nature of the problem: E.g.,
attributes ‘has_throat_color::brown’ and
‘has_upperparts_color::brown’ are indeed statistically re-
lated (Fig. 1(top-right)). Furthermore, it gives an insight into
identifying potential subsets of tasks that can benefit from
MTL. To facilitate this, we performed spectral clustering
of the entire dataset (312 tasks) into 15 clusters1(Fig. 1(top-
left)). Figure 1(top-right) highlights the member tasks of
the first cluster that we used in the main paper as solid
circles: We used a subset of size 10 (blue circles in Figure 1).
As shown in the experiments, performing task pre-clustering
makes all tasks within a single cluster statistically dependent
and therefore renders the simple strategy of uniformly enforc-
ing the task similarity (regMTL) a competitive approach.

2. Additional results
Curriculum learning. Pentina et al.’s curriculum
learning of multiple-tasks (CLMTL) approach
applies a curriculum learning strategy to MTL: Instead of
treating all the tasks symmetrically, they form a sequence

1For spectral clustering (to 15 clusters), a 15-dimensional data rep-
resentation formed by the first 15 eigenvectors E =[e1,...,e15] is used.
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of tasks where information sharing happens only between
consecutive tasks, hence suppressing the influence of outlier
tasks and limiting the negative transfer effect.

The key challenge in this approach is to find the order on
which the tasks are processed. Given an order π, where π(i)
contains the index of the task being processed at iteration i,
a domain adaptation algorithm is used to obtain wπ(i) from
wπ(i−1). For the classification problem, they constructed
the solution wπ(i) as an adaptive support vector machine
(SVM) that minimizes the energy functional:

E(w)=‖w−wπ(i−1)‖2+ C

l(i)

l(i)∑
k=1

ξik, (6)

s.t yik〈w,xik〉≥1−ξik, ξik≥0, ∀ 1≤k≤l(i), (7)

with f(x)=w>x and l(i) being the number of labeled data
points for task i: {(x1,y1),...,(xl(i),yl(i))}.
Based on this adaptation strategy, Pentina et al.’s

original algorithm identifies the sequence π as to minimize
the bound on the generalization error. Their error bound
builds upon McAllester’s PCA Bayesian bound [6] and
therefore, it can be directly applied to only bounded
losses, e.g. classification losses. For ranking and regression
problems where unbounded losses are typically used:

lrank(xi,xj;f)=max(0,1−(f(xi)−f(xj)))2, (8)
lregr(xi,yi;f)=(f(xi)−yj)2, (9)

the corresponding applications of their algorithm are not
straightforward. Instead, we construct adaptations based
on their algorithmic construction. First, we observe that
at iteration i, their algorithm decides the next task T i that
minimizes the following objective function:

O(T j)= 1
l(j)

l(j)∑
k=1

Φ̄
(
yjk〈wj,xjk〉
‖xjk‖

)
+ ‖w

j−wπ(j−1)‖2

2
√
l̄

,

(10)

where l̄ is the harmonic mean of {l(j)}Lj=1 and
Φ̄(z) = 1

2(1− erf( z√
2)) with erf being the error function.

The original CLMTL algorithm (approximately) minimizes
an upper bound on the classification error by selecting the
task that minimizes O in Eq. 10 at each iteration. Now
inspecting the objective O, it can be seen that it consists
of an increasing function of classification training error
(the first term) and the regularization energy (the second
term). Our strategy is to replace the first term by the

corresponding functions of ranking and regression losses:

Oregr(T j)= λ

l(j)

l(j)∑
k=1

Φ̄(lregr(xk,yk;f))+ ‖w
j−wπ(i−1)‖2

2
√
l̄

(11)

Orank(T j)= λ

|P j|
∑

m,n∈P i

Φ̄(lrank(xm,xn;f))

+ ‖w
j−wπ(i−1)‖2

2
√
P̄

, (12)

where P j is the set of ranking labels for task T j, and P̄
is the harmonic mean of {|P j|}Lj=1.

The interpretation of CLMTL’s operational characteris-
tics applied to these objectives are straightforward: It selects
the task whose solution when found, does not deviate sig-
nificantly from the previous task T i−1 and exhibits a small
training error. Unfortunately, the solid theoretical inter-
pretation of the original CLMTL is not anymore applicable.
It should be noted that we introduced an additional scaling
parameter λ>0 to balance the contributions of the training
error and regularization terms. Similarly to the other
algorithms that we compare with, the two hyper-parameters
λ and C are tuned based on the validation sets.

Results. Overall, we improve upon the baseline inde-
pendent estimator (Base1) by adopting MTL approaches
(Tables 1-2). While not all datasets and attributes show sig-
nificant improvement, MTL approaches are on par with or
outperform independent estimators. Since not all tasks are
equally related (as suggested in Fig. 1), regMTL—which uni-
formly enforces pairwise task similarity—is further improved
by allowing sparsity in task dependence (MTFL,AMTL)
and/or task outliers (LRMTL). The performance variations
of different MTL algorithms are significant (OSR, PubFig,
Shoes, RF1, and ENB), while for SUN and Birds datasets
the variation is less significant but noticeable. Among the
four recent parametric MTL algorithms (CLMTL, MTFL,
LRMTL, AMTL), LRMTL turned out to be the best fol-
lowed by AMTL, but there was no clear winner indicating the
complementary nature of different similarity-enforcing strate-
gies. Also, for Birds dataset where by construction, all tasks
are strongly related, the classical regMTL is competitive.

All five existing algorithms use shared parametric forms
and extending them for the multiple heterogeneous estimator
case is not straightforward. The importance of breaking this
limitation can be clearly seen by comparing the results with
the heterogeneous baselines (Base2): Especially, for the OSR
and RF1 datasets, by simply adopting heterogeneous esti-
mators including DNNs, GPs and SVMs, even independent
training already significantly improved performance. Being
able to apply the MTL to these heterogeneous baselines,
our algorithm further improves the performance and is con-
sistently ranked among the best three results. In particular,
our algorithm constantly improves upon the initial Base2.



Bonilla et al.’s non-parametric Gaussian process-based MTL
approach (GPMTL) [2] produced the best results for the
second target attribute of the ENB dataset, improving the
baseline with a large margin. However, their results on RF1
indicates that the performance varies significantly across
different target attributes. The Spike and slab variational
inference (SNS) demonstrated a similar behavior.
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Table 1. Ranking performances of different MTL algorithms. Kendall’s Tau correlations×100 ± std.×100 are presented (higher
is better). The three best results are highlighted with boldface blue, italic green, and plain orange fonts, respectively.
Dataset Target Base1 Base2 CLMTL [7] regMTL [4] MTFL [1] LRMTL [3] AMTL [5] Ours

OSR

1 88.26±0.83 90.26±0.55 88.20±1.04 89.93±0.63 89.09±1.24 90.67±1.06 88.34±0.73 91.95±0.74
2 81.30±0.62 86.01±0.84 81.40±0.96 85.84±1.02 84.15±1.13 81.28±1.15 81.47±0.58 86.33±0.92
3 71.00±1.04 75.01±1.42 71.87±1.04 74.52±2.28 73.89±2.62 73.03±1.31 72.42±1.08 76.30±1.03
4 72.39±1.77 77.66±1.23 73.78±1.50 77.41±0.99 75.10±2.08 73.74±2.05 73.35±1.54 79.01±1.27
5 75.52±1.19 79.30±1.08 77.17±1.12 79.42±1.20 79.02±1.71 78.08±0.89 77.44±0.83 82.52±1.13
6 76.12±1.27 80.04±1.73 77.66±0.98 80.12±1.59 78.23±1.30 76.97±1.74 77.15±1.02 80.55±1.34

PubFig

1 64.50±2.53 66.40±3.08 65.40±2.70 60.55±2.59 62.88±2.51 71.60±1.28 64.47±2.56 71.98±2.89
2 57.10±3.08 60.07±3.53 54.23±4.59 53.12±3.39 54.12±4.07 62.14±4.80 57.10±3.08 64.71±3.58
3 64.22±2.06 66.53±2.77 68.42±2.10 63.97±3.00 65.23±4.05 72.52±1.43 68.31±1.50 72.06±2.70
4 61.91±1.37 64.33±2.44 68.83±1.86 63.01±2.00 60.69±2.99 70.34±2.37 69.16±2.04 69.15±4.53
5 55.82±3.33 58.48±2.97 62.76±1.58 54.22±3.64 55.36±3.37 65.08±1.28 62.09±3.12 68.65±2.26
6 75.12±1.54 77.34±2.54 75.11±1.45 74.65±1.53 72.86±3.40 77.43±2.18 75.13±1.55 78.18±3.31
7 58.79±3.03 62.66±3.54 62.64±2.32 57.66±3.74 59.36±3.99 66.53±1.54 58.79±3.03 65.34±4.76
8 60.05±1.69 61.91±2.68 57.33±2.88 60.13±1.31 58.08±2.65 62.63±2.01 60.05±1.68 62.54±2.89
9 52.44±2.72 57.09±3.43 46.96±4.53 53.74±3.54 53.78±3.25 56.65±4.92 52.55±2.87 57.53±3.80
10 58.27±3.86 61.51±2.77 63.93±1.92 59.15±2.18 58.25±3.36 66.88±1.78 64.21±3.45 66.47±3.53
11 63.21±1.82 66.81±2.39 69.53±1.82 64.15±1.36 63.91±3.60 74.05±1.25 70.07±1.58 74.99±1.15

Shoes

1 68.09±1.47 67.87±0.70 68.68±1.88 69.08±1.76 68.43±1.06 69.72±1.31 68.84±1.90 71.93±0.91
2 56.39±1.84 60.27±2.71 56.81±2.63 59.04±1.72 57.81±2.08 58.02±3.00 57.71±1.88 60.37±2.52
3 30.50±3.65 34.43±2.66 30.08±4.65 32.39±3.60 32.55±3.39 30.55±2.60 31.09±3.47 34.42±2.61
4 46.18±1.63 48.41±2.31 46.74±1.81 46.85±2.11 46.04±2.72 46.24±1.83 45.81±2.10 48.47±2.26
5 61.44±1.99 61.64±1.98 62.55±1.67 63.92±1.51 62.21±2.09 62.77±1.81 63.06±1.40 64.79±0.99
6 61.87±2.30 60.80±3.56 62.34±2.41 64.40±2.36 62.79±2.31 62.62±1.81 62.46±1.92 62.06±2.14
7 52.58±1.51 56.43±2.02 51.07±1.53 53.64±1.65 52.40±2.54 52.58±2.85 52.95±1.28 57.15±2.45
8 49.56±1.73 48.89±0.86 50.06±1.55 50.34±2.12 51.98±1.92 49.68±1.66 50.24±1.30 50.78±1.50
9 61.57±1.97 62.78±2.59 60.02±1.33 62.07±2.44 63.34±2.33 62.89±1.81 61.63±1.90 67.11±1.12
10 66.91±1.16 66.83±2.33 68.66±1.23 69.16±1.02 68.10±1.56 69.34±1.43 68.86±1.91 72.09±1.08

SUN

1 66.18±3.15 68.24±4.32 66.87±4.85 66.52±4.41 68.39±4.39 72.01±5.65 65.21±7.56 70.62±3.35
2 71.24±3.11 75.31±4.06 71.90±4.41 75.04±3.08 73.78±5.97 75.89±1.08 72.60±4.50 73.74±4.53
3 76.84±1.16 76.77±1.87 79.77±1.25 75.74±2.15 75.87±1.90 77.73±2.07 77.62±1.37 78.78±1.82
4 79.03±1.21 80.40±1.32 82.61±1.32 79.19±3.37 79.58±1.52 84.20±0.40 79.75±3.30 82.49±0.87
5 79.66±1.42 78.67±2.41 81.56±1.49 78.43±1.68 78.42±1.04 80.64±1.63 80.59±1.62 80.66±1.55
6 80.75±0.81 79.76±1.79 82.34±0.99 78.78±3.35 79.47±0.95 82.71±0.90 81.44±0.79 82.14±1.04
7 79.76±0.65 79.41±1.00 79.95±1.06 79.62±0.88 78.17±1.16 78.76±1.36 79.65±0.90 80.03±0.81
8 83.91±0.53 84.12±0.67 81.20±2.78 84.21±0.60 84.13±0.60 83.39±1.46 84.08±0.77 83.83±0.72
9 63.34±1.10 63.13±1.01 62.82±1.55 61.91±2.30 62.53±0.73 62.67±0.30 63.23±1.22 63.14±0.90
10 82.23±3.50 80.85±5.77 76.39±5.39 78.79±6.76 77.30±7.76 84.64±2.42 80.60±5.41 81.31±2.91

Birds

1 56.78±3.06 56.76±3.04 57.36±1.87 60.43±3.24 52.51±5.00 55.07±2.48 59.38±4.26 58.70±3.69
2 42.18±3.24 41.23±4.18 44.76±10.96 54.15±4.33 52.66±3.51 47.88±5.18 53.43±3.09 53.88±2.46
3 57.74±1.84 57.56±2.48 59.11±1.70 61.67±2.69 59.30±2.15 55.45±2.89 60.07±4.44 60.08±1.53
4 46.69±2.74 46.97±2.02 50.82±7.55 54.21±4.17 51.29±1.60 52.74±5.55 56.48±1.76 54.36±1.29
5 49.94±3.95 48.56±6.42 55.07±2.14 54.95±3.55 53.40±4.39 51.41±6.44 51.86±6.61 53.16±2.09
6 41.78±0.91 43.91±3.11 49.97±8.85 54.00±3.51 48.17±5.16 46.14±4.86 55.75±1.09 52.31±1.95
7 46.46±5.68 45.70±5.90 49.77±5.72 48.99±10.49 49.19±1.43 51.44±3.38 50.82±5.46 51.50±1.03
8 56.46±0.84 56.53±2.43 56.70±9.76 62.96±2.32 58.79±3.03 58.56±4.55 62.99±1.02 60.66±1.91
9 49.89±2.23 49.66±2.16 54.28±2.05 53.92±5.16 53.26±1.64 49.61±3.99 55.61±2.66 55.68±1.15
10 54.71±6.15 54.08±6.83 59.33±3.74 60.27±4.21 58.73±2.86 58.46±4.70 59.50±6.81 60.99±1.70

Table 2. Regression performances of different MTL algorithms. Mean squared error ± std. are presented (lower is better). The
three best results are highlighted with boldface blue, italic green, and plain orange fonts, respectively.
Dataset Target Base1 Base2 CLMTL [7] regMTL [4] MTFL [1] LRMTL [3] AMTL [5] GPMTL [2] SNS [8] Ours

RF1

1 21.93±17.51 11.30±2.06 11.19±0.78 12.73±0.69 11.71±0.82 11.67±0.64 13.46±4.68 26.28±9.75 15.26±4.68 11.20±2.13
2 0.98±0.36 0.80±0.20 0.94±0.11 0.83±0.14 0.85±0.14 1.05±0.12 1.03±0.30 0.84±0.19 0.81±0.18 0.80±0.20
3 23.21±25.28 15.82±1.89 15.13±0.62 15.82±0.67 15.19±1.19 15.38±0.56 16.43±3.52 25.72±8.56 17.09±4.05 14.63±1.47
4 14.98±4.71 13.41±2.28 12.52±0.58 12.80±0.68 12.63±1.13 12.58±0.37 13.06±1.90 16.89±3.97 13.26±2.69 12.51±1.37
5 7.80±0.26 7.58±0.68 7.82±0.26 8.40±0.97 7.80±0.53 7.75±0.25 7.77±0.25 10.47±3.97 8.24±1.16 7.45±0.66
6 2.46±0.09 2.35±0.21 2.43±0.07 2.53±0.16 2.56±0.14 2.57±0.07 2.54±0.26 2.28±0.70 2.48±0.13 2.32±0.18
7 5.88±0.62 4.85±1.18 5.54±0.17 4.90±0.74 4.98±0.81 5.46±0.15 6.05±1.14 7.25±3.35 5.13±1.25 4.69±1.05
8 7.94±8.92 4.79±0.44 5.34±0.26 5.45±0.46 5.27±0.23 5.43±0.12 5.24±0.23 6.52±2.69 5.40±0.59 4.67±0.33

ENB 1 3.01±0.13 0.92±0.04 3.01±0.12 2.22±0.20 1.24±0.10 6.07±0.15 3.01±0.12 0.96±0.12 1.07±0.09 0.92±0.04
2 3.26±0.15 1.85±0.15 3.26±0.13 2.44±0.12 1.95±0.20 6.19±0.18 3.26±0.13 1.76±0.12 2.01±0.28 1.82±0.14
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Figure 1. Two-D spectral embedding of 312 tasks in the Birds dataset, and visualization of the FSIC matrix. (Top-left) the color and shape
of each entry represents the index of the cluster it belongs to (out of 15 clusters) and (top-right) 18 elements of the first cluster (displayed
as solid circles). (Bottom) the FSIC matrix (diagonal entries are set to 0). Readers are advised to check the electronic version of figure.


