
Supplementary material: Mix and match networks: encoder-decoder alignment
for zero-pair image translation

Yaxing Wang, Joost van de Weijer, Luis Herranz
Computer Vision Center, Universitat Autònoma de Barcelona

Barcelona, Spain
{wang,joost,lherranz}@cvc.uab.es

1. Network architecture

Table 3 shows the architecture (convolutional and pool-
ing layers) of the encoders used in the cross-modal exper-
iment. Tables 4 and 1 show the corresponding decoders.
Table 2 shows the discriminator used for RGB. . Every
convolutional layer of the encoders, decoders and the dis-
criminator is followed by a batch normalization layer and a
ReLU layer (LeakyReLU for the discriminator). The only
exception is the RGB encoder, which is is initialized with
weights from the VGG16 model[1] and does not use batch
normalization.

layer Input →Output Kernel, stride
conv1 [6,8,8,512] → [6, 16, 16, 512] [3, 3], 1
conv2 [6,16,16,512] → [6, 32, 32, 256] [3, 3], 1
conv3 [6,32,32,256] → [6, 64, 64, 128] [3, 3], 1
conv4 [6,64,64,128] → [6, 128, 128, 64] [3, 3], 1
conv5 [6,128,128,64]→ [6, 256, 256, 3] [3, 3], 1

Table 1: Convolutional and pooling layers of the RGB de-
coder.

layer Input →Output Kernel, stride
deconv1 [6, 256, 256, 3] → [6, 128, 128, 64] [5, 5], 2
deconv2 [6, 128, 128, 64] → [6, 64, 64, 128] [5, 5], 2
deconv3 [6, 64, 64, 128] → [6, 32, 32, 256] [5,5], 2
deconv4 [6, 32, 32, 256] → [6, 16, 16, 512] [5,5], 2

Table 2: RGB discriminator.

2. Multimodal fusion

Figure 1 shows the performance for different values of
α for multimodal semantic segmentation. It also compares
the performance when the semantic segmentation decoder
uses the pooling indices from the depth encoder instead of
the ones from the RGB encoder.

0.0 0.2 0.4 0.6 0.8 1.0
α

40

45

50

55

60

m
Io

U
 (

%
)

RGB indices

Depth indices

Figure 1: Multimodal semantic segmentation: pooling in-
dices modality and modality weight α (α = 0 for RGB
only, α = 1 for depth only).

References
[1] K. Simonyan and A. Zisserman. Very deep convo-

lutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

1



Layer Input →Output Kernel, stride
conv1 (RGB) [6,256,256,3] → [6,256,256,64] [3,3], 1
conv1 (Depth) [6, 256, 256, 1] → [6, 256, 256, 64] [3,3], 1
conv1 (Segm.) [6,256,256,14] → [6,256,256,64] [3,3], 1

conv2 [6,256,256,64] → [6,256,256,64] [3,3], 1
pool2 (max) [6,256,256,64] → [6,128,128,64]+indices2 [2,2], 2

conv3 [6,128,128,64] → [6,128,128,128] [3,3], 1
conv4 [6,128,128,128] → [6,128,128,128] [3,3], 1

pool4 (max) [6,128,128,128] → [6,64,64,128]+indices4 [2,2], 2
conv5 [6,64,64,128] → [6,64,64,256] [3,3], 1
conv6 [6,64,64,256] → [6,64,64,256] [3,3], 1
conv7 [6,64,64,256] → [6,64,64,256] [3,3], 1

pool7 (max) [6,64,64,256] → [6,32,32,256]+indices7 [2,2], 2
conv8 [6,32,32,256] → [6,32,32,512] [3,3], 1
conv9 [6,32,32,512] → [6,32,32,512] [3,3], 1
con10 [6,32,32,512] → [6,32,32,512] [3,3], 1

pool10 (max) [6,32,32,512] → [6,16,16,512]+indices10 [2,2], 2
conv11 [6,16,16,512] → [6,16,16,512] [3,3], 1
conv12 [6,16,16,512] → [6,16,16,512] [3,3], 1
conv13 [6,16,16,512] → [6,16,16,512] [3,3], 1

pool13 (max) [6,16,16,512] → [6,8,8,512]+indices13 [2,2], 2

Table 3: Convolutional and pooling layers of the encoders.

layer Input →Output Kernel, stride
unpool1 indices13 + [6,8,8,512] → [6, 16, 16, 512] [2, 2], 2
conv1 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1
conv2 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1
conv3 [6,16,16,512] → [6, 16, 16, 512] [3,3], 1

unpool4 indices10 + [6,16,16,512] → [6, 32, 32, 512] [2, 2], 2
conv4 [6,32,32,512] → [6, 32, 32, 512] [3,3], 1
conv5 [6,32,32,512] → [6, 32, 32, 512] [3,3], 1
conv6 [6,32,32,512] → [6, 32, 32, 256] [3,3], 1

unpool7 indices7 + [6,32,32,256] → [6, 64, 64, 256] [2, 2], 2
conv7 [6,64,64,256] → [6, 64, 64, 256] [3,3], 1
conv8 [6,64,64,256]→ [6, 64, 64, 256] [3,3], 1
conv9 [6,64,64,256]→ [6, 64, 64, 128] [3,3], 1

unpool10 indices4 + [6,64,64,128] → [6, 128, 128, 128] [2, 2], 2
conv10 [6,128,128,128] → [6, 128, 128, 128] [3,3], 1
conv11 [6,128,128,128] → [6, 128, 128, 64] [3,3], 1

unpool12 indices2 + [6,128,128,64] → [6, 256, 256, 64] [2, 2], 2
conv12 [6,256,256,64] → [6, 256, 256, 64] [3,3], 1

conv13 (Depth) [6,256,256,64] → [6, 256, 256, 1] [3,3], 1
conv13 (Segm.) [6,256,256,64] → [6, 256, 256, 14] [3,3], 1

Table 4: Convolutional and pooling layers of the segmentation and depth decoders.


