
A. Appendix
This section contains explanatory comments, clarifica-

tions and mathematical derivations to support the main text.

A.1. Properties of the softmax function

Here, we discuss properties of the softmax function that
are used below. We start with its stationarity:

smax(x+ d, y + d) =
exp(x+ d)

exp(x+ d) + exp(y + d)
(26)

=
exp(d) exp(x)

exp(d)(exp(x) + exp(y))
(27)

=
exp(x)

exp(x) + exp(y)
(28)

= smax(x, y). (29)

Setting d = −x− y, we get the following property:

smax(x, y) = smax(x− x− y, y − x− y) (30)
= smax(−y,−x). (31)

A.2. Probabilistic derivation of Llog and Lsub

The log loss has been previously discussed in the litera-
ture (e.g. Hoffer and Ailon [9]), but it was reported to per-
form quite badly. We believe that this is primarily because it
was used at the wrong scale, not because it is unsuitable per
se (quite the opposite, as we have empirically demonstrated
in our experiments). In the following, we give a derivation
of both the SSE loss (3) and the log loss (2) where we start
from a probabilistic point of view, showing that the log loss
in particular has sound theoretical foundations.

Our objective is to encourage that dp becomes smaller
than dn, where a larger gap is better. This can be expressed
with the softmax function:

smax(dp, dn) =
exp(dp)

exp(dp) + exp(dn)
(32)

The softmax function is in [0, 1], that is, we can interpret it
probabilistically as the uncertainty whether the two patches
in the positive pair are indeed more similar than the ones in
the negative pair. Our objective is to minimize this uncer-
tainty:

smax(dp, dn) −→ 0, or, equivalently, (33)
1− smax(dp, dn) −→ 1. (34)

To measure the deviation from this objective, we can use
the cross-entropy between actual and desired values:

Llog(dp, dn) =− 0 · log(smax(dp, dn)) (35)
− 1 · log(1− smax(dp, dn)) (36)

=− log(1− smax(dp, dn)). (37)

For the sake of a shorter notation, we rewrite the term under
the logarithm:

1− smax(dp, dn) = 1− exp(dp)

exp(dp) + exp(dn)
(38)

=
exp(dp) + exp(dn)− exp(dp)

exp(dn) + exp(dp)
(39)

=
exp(dn)

exp(dn) + exp(dp)
= smax(dn, dp). (40)

Using (31), this can be further rewritten:

smax(dn, dp) = smax(−dp,−dn). (41)

Hence, we get the final formulation of the log loss:

Llog(dp, dn) = − log smax(−dp,−dn). (42)

As an alternative to the cross-entropy, one can simply cal-
culate the squared sum of errors of the two cases (33) and
(34):

L∗sse(dp, dn) =(0− smax(dp, dn))2 (43)

+(1− (1− smax(dp, dn))2 (44)

= 2 smax(dp, dn)2. (45)

For simplicity, we leave away the constant factor 2 (this can
be compensated by increasing the learning rate), yielding
the SSE loss:

Lsse(dp, dn) = smax(dp, dn)2. (46)

A.3. Losses and performance functions

In this section, we show how the five losses discussed
in Section 2 can be rewritten in terms of the performance
functions given in Equations (7) to (9). The following three
cases are straightforward:

Lsub = [dp − dn + α]+ = [α− ρsub]+ , (47)

Lsub2 =
[
d2p − d2n + α

]
+

= [α− ρsub2]+ , (48)

Ldiv =

[
1− dn

dp + ε

]
+

= [1− ρdiv]+ . (49)

The two remaining cases, Llog and Lsse are less obvious, but
using (29) we can write:

Llog = − log smax(−dp,−dn) (50)
= − log smax(−dp + dn,−dn + dn) (51)
= − log smax(dn − dp, 0) (52)
= − log smax(ρsub, 0), (53)

Lsse = smax(dp, dn)2 (54)

= smax(dp − dn, dn − dn)2 (55)

= smax(−(dn − dp), 0)2 (56)

= smax(−ρsub, 0)2. (57)



A.4. Corner Cases of Generalized Scale Log Loss

In the following, we derive the two corner cases of L̃log
from Section 3.3.

Case δ → ∞: Here, we show Equation (18). First, we
rewrite the loss (setting ρ := ρsub):

L̃log(ρ) =
1

δ
Llog(δ(ρ− α)) (58)

= −1

δ
log smax(δ(ρ− α), 0) (59)

= − log smax(δ(ρ− α), 0)1/δ (60)

= − log

[
exp(δ(ρ− α))

exp(δ(ρ− α)) + exp(0)

]1/δ
(61)

= − log

[
exp(ρ− α)

δ
√

exp(ρ− α)δ + exp(0)

]
. (62)

To see what happens as δ →∞, we make a case distinction:

• ρ − α < 0: in this case, the root in the denomina-
tor is dominated by exp(0) = 1 because exp(ρ −
α)δ disappears. Hence, we have limδ→∞ L̃log(ρ) =
− log[exp(ρ− α)] = α− ρ.

• ρ − α ≥ 0: in this case, exp(ρ − α) dominates the
root in the denominator. We have limδ→∞ L̃log(ρ) =
− log[exp(ρ− α)/ exp(ρ− α)] = 0.

Concluding:

lim
δ→∞

L̃log(ρ) =

{
α− ρ if α− ρ > 0

0 if α− ρ ≤ 0
(63)

= max {α− ρ, 0} (64)

= [α− ρ]+ = L̃sub(ρ;α). (65)

Case δ → 0: Here, we show Equation (17). Actually, the
loss Llog diverges for δ → 0, but as we discussed in the
text, we are not primarily interested in the actual value of a
loss but in its derivative which tells us how strongly the loss
acts. Therefore, we consider what happens for very small
values of δ by investigating the derivative. It is given below
in Equation (76). It is easy to see that limδ→0 exp(δ(ρsub −
α)) = 1, and consequently:

lim
δ→0

∂Llog(ρsub)

∂ρsub
= − 1

1 + 1
− 1

2
. (66)

By integrating, we get that the loss behaves asymptotically
as the following loss:

lim
δ→0
L̃log(ρsub;α, δ) ∝ −0.5ρsub. (67)

A.5. Antisymmetry

In Section 4.1, we mention that losses in ρsub are anti-
symmetric, i.e.,

∂L(ρsub(dp, dn))

∂dp
= −∂L(ρsub(dp, dn))

∂dn
. (68)

Using the definition of the difference performance function
in Equation (7) and the chain rule, we can derive:

∂L(ρsub)

∂dp
=
∂L(dn − dp)

∂dp
(69)

=
∂(dn − dp)

∂dp

∂L(dn − dp)
∂(dn − dp)

(70)

= −∂L(dn − dp)
∂(dn − dp)

= −∂L(ρsub)

∂ρsub
, (71)

∂L(ρsub)

∂dn
=
∂L(dn − dp)

∂dn
(72)

=
∂(dn − dp)

∂dn

∂L(dn − dp)
∂(dn − dp)

(73)

= +
∂L(dn − dp)
∂(dn − dp)

= +
∂L(ρsub)

∂ρsub
. (74)

It is immediately visible that

∂L(ρsub)

∂dp
= −∂L(ρsub)

∂dn
, (75)

i.e., any loss in ρsub is antisymmetric.

A.6. Derivatives of the losses

For visualizing the losses, we need the derivatives of the
losses w.r.t. their performance functions. For the three cases
in Figure 4:

∂L̃log(ρsub)

∂ρsub
=− 1

exp(δ(ρsub − α)) + 1
(76)

∂L̃sse(ρsub)

∂ρsub
=− 2

smax(−δ(ρsub − α), 0)2

exp(δ(ρsub − α))2
(77)

∂Lsub(ρsub)

∂ρsub
=

{
0 if ρsub > α

−1 otherwise
(78)

For completeness, we also give the derivatives of the other
two losses:

∂Lsub2(ρsub2)

∂ρsub2
=

{
0 if ρsub2 > α

−1 otherwise
(79)

∂Ldiv(ρdiv)

∂ρdiv
=

{
0 if ρdiv > 1

−1 otherwise
(80)
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Figure 8: PR curves and their APs on the mixed-context
loss. Model is trained on each of the three scenes:
liberty, notredame, and yosemite and then tested
on the other datasets.

A.7. Full PR curves and their AP

In this section, we report the full PR curves and their AP
in Figure 8 on the UBC benchmark [7] by following the pro-
cedures described in [22]. The PR curve is computed from
the default 100’000 evaluation patch pairs of each dataset.
The values are analogous to the last row of Table 1

A.8. Scale-aware sampling and L2-Net

Based on our discussion of the importance of scale in
descriptor learning, we introduced scale-aware sampling in
Section 4.3 and empirically demonstrated in Section 5 that it
indeed brings a considerable boost in performance. In fact,
if we look at the losses that were presented in key papers in
the last two years, we can see that they followed a similar
idea, only less consequently. One example is L2-Net [23]
whose loss can be written as follows (it differs in details
from the formulation in the original paper, but is true to the
main idea):

LL2 = −
N∑
i=1

log

[
exp(−dip)

exp(−dip) +
∑
j exp(−di,jn )

]
. (81)

At first, glance, it is difficult to see the relationship with
scale-aware sampling. However, if we use the fact that∑
j exp(−di,jn ) = exp log

∑
j exp(−di,jn ), we can under-

stand the fraction as a softmax function and hence rewrite

the loss in terms of the log loss Llog (Equation (2)):

LL2 =

N∑
i=1

−log smax
(
−dip, log

∑
j

exp
(
−di,jn

))
(82)

=

N∑
i=1

Llog

(
dip,− log

∑
j

exp
(
−di,jn

))
. (83)

In other words, we can interpret the loss of L2-Net as a kind
triplet loss where many negative distances are amalgamated
into one single value by means of a log-sum-exp expres-
sion (note that it therefore still suffers from the localized-
context problem). This gives more weight to the smaller
negative distances than to larger ones, that is, we can under-
stand L2-Net as an approximation to our scale-aware sam-
pling scheme where we simply pick the smallest negative
distance minj{di,jn }. The corresponding loss then is the one
we presented in Equation (23), with Ltriplet := Llog:

N∑
i=1

Llog

(
dip,min

j
{di,jn }

)
. (84)


