A. Appendix

This section contains explanatory comments, clarifica-
tions and mathematical derivations to support the main text.

A.1. Properties of the softmax function

Here, we discuss properties of the softmax function that
are used below. We start with its stationarity:

_ exp(z + d)
smax(z + d,y + d) = exp(z + d) + exp(y + d) (26)
exp(d) exp(z)
expd) (exp(a) + exp(y)
exp(z)
= 28
exp(z) + exp(y) 29
= smax(z,y). (29)

Setting d = —x — y, we get the following property:

-yy—xz—y) (30
= smax(—y, —z). (31)

smax(z,y) = smax(r — x

A.2. Probabilistic derivation of £,,, and Ly,

The log loss has been previously discussed in the litera-
ture (e.g. Hoffer and Ailon [9]), but it was reported to per-
form quite badly. We believe that this is primarily because it
was used at the wrong scale, not because it is unsuitable per
se (quite the opposite, as we have empirically demonstrated
in our experiments). In the following, we give a derivation
of both the SSE loss (3) and the log loss (2) where we start
from a probabilistic point of view, showing that the log loss
in particular has sound theoretical foundations.

Our objective is to encourage that d, becomes smaller
than d,,, where a larger gap is better. This can be expressed
with the softmax function:

exp(d,)
exp(d,) + exp(dy,)

smax(d,, d,,) = (32)

The softmax function is in [0, 1], that is, we can interpret it

probabilistically as the uncertainty whether the two patches

in the positive pair are indeed more similar than the ones in

the negative pair. Our objective is to minimize this uncer-
tainty:

smax(d,,d,) — 0, or, equivalently, (33)

1 —smax(dy,d,) — 1. (34)

To measure the deviation from this objective, we can use
the cross-entropy between actual and desired values:

Liog(dp,dy,) = — 0 - log(smax(d,, dy,)) 35)

—1-log(1 — smax(dp,d,)) (36)
— log(1 — smax(dp, dy)). 37

For the sake of a shorter notation, we rewrite the term under
the logarithm:

CXP(dp)
exp(dp) + exp(dn)
_ exp(dy) + exp(dy,) — exp(dp)

- exp(dy,) + exp(dp)
exp(dy,)

= op(dy) +expldy) Sl dp)- - (40)

1—smax(dp,dn) =1 — (38)

(39)

Using (31), this can be further rewritten:
smax(d,, d,) = smax(—dp, —d,). 41)
Hence, we get the final formulation of the log loss:
Liog(dp, dy) = —logsmax(—dp, —dy,). (42)

As an alternative to the cross-entropy, one can simply cal-
culate the squared sum of errors of the two cases (33) and
(34):

Lk (dy, dy) =(0 — smax(d,, dy,))? (43)
+(1 — (1 — smax(dp, dn)) (44)
= 2smax(d,, d,)>. (45)

For simplicity, we leave away the constant factor 2 (this can
be compensated by increasing the learning rate), yielding
the SSE loss:

Lse(dp, dy) = smax(dy, dy,)>. (46)
A.3. Losses and performance functions

In this section, we show how the five losses discussed
in Section 2 can be rewritten in terms of the performance
functions given in Equations (7) to (9). The following three
cases are straightforward:

Lob = [dp —d, + Oé]+ = [Oé - psubh_ 5 (47)
Loy = [d) —di +a] | = [a—paw],, (48)

dn
} = [1 — pav] . - (49)

Ly = |1 — ——
div |: dp+€+

The two remaining cases, Ljog and L are less obvious, but
using (29) we can write:

Liog = —logsmax(—d,, —dy) (50)
= —logsmax(—d, + dp, —d, +d,) (51)

= —logsmax(d, — dp, 0) (52)

= — log smax(pgu, 0), (53)
Lsse = smax(dp,d)2 (54)
= smax(d, — dy, d,, — dy)? (55)

= bmaX((dn —dp),0)? (56)
ax(—pauv, 0)°. (57)

A .4. Corner Cases of Generalized Scale Log Loss

In the following, we derive the two corner cases of ﬁlog
from Section 3.3.

Case 6 — oo: Here, we show Equation (18). First, we
rewrite the loss (setting p := pgp):

~ 1

»Clog(p) = Sclog(d(p —a)) (58)
= —% log smax(d(p — «),0) (59)
= —logsmax(d(p — a),0)'/? (60)

exp(d(p—a)) 7
[expw(p —a)+ exp<o>} ©b

— 1 exp(p — @)
© l {/exp(p — a)? + exp(0)

To see what happens as 6 — oo, we make a case distinction:

] . (62)

e p— « < 0: in this case, the root in the denomina-
tor is dominated by exp(0) = 1 because exp(p —
a)? disappears. Hence, we have lims_, o, Liog(p) =
—loglexp(p — a)] = a —p.

e p—a > 0: in this case, exp(p — «) dominates the
root in the denominator. We have lim;s_, o Liog(p) =
— loglexp(p —)/ exp(p — a)] = 0.

Concluding:

L _Ja—p ifa—p>0
Jim Liog(p) = {0 ifa—p<0 (63

= max {a — p,0} (64)

= [a — p]-f- = Esub(ﬂ?). (65)

Case 6 — 0: Here, we show Equation (17). Actually, the
loss Lo diverges for 6 — 0, but as we discussed in the
text, we are not primarily interested in the actual value of a
loss but in its derivative which tells us how strongly the loss
acts. Therefore, we consider what happens for very small
values of d by investigating the derivative. It is given below
in Equation (76). It is easy to see that lims_, g exp(§(psup —
«)) = 1, and consequently:

9 L10a (s 11
li PEtoe(Ps) _ _ - (66)
6—0 8psub 141 2

By integrating, we get that the loss behaves asymptotically
as the following loss:

lim Elog(psulﬁ @, 5) X —0.5p5up- (67)
§—0

A.5. Antisymmetry

In Section 4.1, we mention that losses in pg, are anti-

symmetric, i.e.,
8L(psub(dpa dn)) _ ac(psub(d;m dn))) (68)

od, ady,

Using the definition of the difference performance function
in Equation (7) and the chain rule, we can derive:

OL(psw) _ OL(dy — dp)

od, — od, e
aca(gjb) _ 8£(fénd; dp) (72)
_ a(dgC;L d) 885(51?—;1;) (73)
i

It is immediately visible that
ac{;g;ub) _ _Mé)(c?:b)’ (75)

i.e., any loss in pgyyp is antisymmetric.

A.6. Derivatives of the losses

For visualizing the losses, we need the derivatives of the
losses w.r.t. their performance functions. For the three cases
in Figure 4:

ailog(ﬂsub) 1
= 76

dpsub exp(d(psub — @) + 1 (76)
8 _ _ 2

8Acsse(psub) _ 2smaX(§(psub CY),QO) a7
Ipsub exp(8(psup — v))

ML(pSUb) = 0 if Psub > @ (78)
OPsub —1 otherwise

For completeness, we also give the derivatives of the other
two losses:

aAcsub2(psub2) o 0 if Psub2 > &
—_— = . (79)
Opsuv2 —1 otherwise
OLgiv(Pdiv 0 if pgi 1
d (pd) _ 1 Pdw.> (80)
Opdiv —1 otherwise

1.00
=1
S
.z
3 —— LIB—=NOT (AP=0.989)
= LIB—YOS (AP=0.984)
—— NOT—LIB (AP=0.985)
—— NOT—YOS (AP=0.985)
—— YOS—LIB (AP =0.983)
—— YOS—NOT (AP=0.987)
0.85 .
0.85 1.00

recall

Figure 8: PR curves and their APs on the mixed-context
loss. Model is trained on each of the three scenes:
liberty, notredame, and yosemite and then tested
on the other datasets.

A.7. Full PR curves and their AP

In this section, we report the full PR curves and their AP
in Figure 8 on the UBC benchmark [7] by following the pro-
cedures described in [22]. The PR curve is computed from
the default 100’000 evaluation patch pairs of each dataset.
The values are analogous to the last row of Table |

A.8. Scale-aware sampling and L2-Net

Based on our discussion of the importance of scale in
descriptor learning, we introduced scale-aware sampling in
Section 4.3 and empirically demonstrated in Section 5 that it
indeed brings a considerable boost in performance. In fact,
if we look at the losses that were presented in key papers in
the last two years, we can see that they followed a similar
idea, only less consequently. One example is L2-Net [23]
whose loss can be written as follows (it differs in details
from the formulation in the original paper, but is true to the
main idea):

Ly = — g:log expl=dy) | 1)
i=1 eXp(—d;,) + Z]‘ exp(—dﬁ{])

At first, glance, it is difficult to see the relationship with
scale-aware sampling. However, if we use the fact that
>_jexp(—dy?) = explog_; exp(—d,’), we can under-
stand the fraction as a softmax function and hence rewrite

the loss in terms of the log loss Lo, (Equation (2)):

In other words, we can interpret the loss of L2-Net as a kind
triplet loss where many negative distances are amalgamated
into one single value by means of a log-sum-exp expres-
sion (note that it therefore still suffers from the localized-
context problem). This gives more weight to the smaller
negative distances than to larger ones, that is, we can under-
stand L2-Net as an approximation to our scale-aware sam-
pling scheme where we simply pick the smallest negative
distance min;{d’;’ }. The corresponding loss then is the one
we presented in Equation (23), with Lyipler := Liog:

N
> Liog (d;, min{d"7 }) . (84)
i=1 J

