
Learning Time/Memory-Efficient Deep Architectures with Budgeted Super
Networks

Supplementary Material
Demonstration of Proposition 1

Let us consider the stochastic optimization problem de-
fined in Equation 3. The schema of the proof is the follow-
ing:

• First, we lower bound the value of Equation 3 by the
optimal value of Equation 2.

• Then we show that this lower bound can be reached by
some particular values of Γ and θ in Equation 3. Said
otherwise, the solution of Equation 3 is equivalent to
the solution of 2.

Let us denote:

B(H � E, θ,λ) =
1

�

�

i

Δ(f(xi, H � E, θ), yi)

+ λmax(0, C(H � E)− C) (8)

Given a value of Γ, let us denote supp(Γ) all the H ma-
trices that can be sampled following Γ. The objective func-
tion of Equation 3 can be written as:

EH∼Γ[B(H � E, θ,λ)] =
�

H∈supp(Γ)

B(H � E, θ,λ)P (H|Γ)

≥
�

H∈supp(Γ)

B((H � E)∗, θ∗,λ)P (H|Γ)

= B((H � E)∗, θ∗,λ)
(9)

where (H � E)∗ and θ∗ correspond to the solution of:

(H � E)∗, θ∗ = argmin
H,θ

B(H � E, θ,λ) (10)

Now, it is easy to show that this lower bound can be
reached by considering a value of Γ∗ such that ∀H ∈
supp(Γ), H �E = (H �E)∗. This corresponds to a value
of Γ where all the probabilities associated to edges in E are
equal to 0 or to 1.

Gradient computation

∇θ,ΓL(x, y, E,Γ, θ) = ∇θ,ΓEH∼ΓD(x, y, θ, E,H) (11)

= ∇θ,Γ

�

H

P (H|Γ)D(x, y, θ, E,H) (12)

=
�

H

∇θ,Γ(P (H|Γ)D(x, y, θ, E,H)) (13)

=
�

H

∇θ,Γ(P (H|Γ))D(x, y, θ, E,H)

+ P (H|Γ)∇θ,ΓD(x, y, θ, E,H) (14)

=
�

H

P (H|Γ)∇θ,Γ logP (H|Γ)D(x, y, θ, E,H)

+ P (H|Γ)∇θ,ΓD(x, y, θ, E,H) (15)

Using Equation 4:

=
�

H

P (H|Γ)((∇θ,Γ logP (H|Γ))D(x, y, θ, E,H)

+∇θ,ΓΔ(f(x,H � E, θ), y)) (16)

=
�

H

P (H|Γ) [(∇θ,Γ logP (H|Γ))D(x, y, θ, E,H)]

+
�

H

P (H|Γ) [∇θ,ΓΔ(f(x,H � E, θ), y)] (17)

=
�

H

P (H|Γ) [(∇θ,Γ logP (H|Γ))Δ(f(x,H � E, θ), y)]

+λ
�

H

P (H|Γ) [(∇θ,Γ logP (H|Γ))max(0, C(H � E)−C)]

+
�

H

P (H|Γ) [∇θ,ΓΔ(f(x,H � E, θ), y)] (18)

Segmentation architecture

Figure 6: Segmentation architecture

Figure 6 is an example of segmentation architecture dis-
covered on the Part Label dataset using the flop cost. It is
interesting to note that only one layer with 256x256 input
and output is kept and that most of the computations are
done at lower less-expensive layers.

Model Selection Protocol

Figure 7: Model selection

The selection of reported models is obtained by learning
many different models, computing the Pareto front of the
accuracy/cost curve on the validation set, and reporting the
performance obtained on the test set. This is illustrated in
figure 7 where many different models are reported on the
validation set(blue circles) with the corresponding perfor-
mance on the test set (red crosses).

Considering non-differentiable costs
Stochastic costs in the REINFORCE algorithm:

As explained previously, the proposed algorithm can also
be used when the cost C(H � E) is a stochastic function
that depends on the environment e.g the network latency,
(or even on the input data x). Our algorithm is still able
to learn with such stochastic costs since the only change in
the learning objective is that the expectation is now made
on both H and C (and x if needed). This property is in-
teresting since it allows to discover efficient architecture on
stochastic operational infrastructure.

Distributed computation cost Taking the real-life exam-
ple of a network which will, once optimized, have to run on
a given computing infrastructure, the distributed computa-
tion cost is a measure of how ”parallelizable” an architec-
ture is. This cost function takes the following three elements
as inputs (i)A network architecture (represented as a graph
for instance), (ii)An allocation algorithm and (iii) a maxi-
mum number of concurrent possible operations. The cost
function then returns the number of computation cycles re-
quired to run the architecture given the allocation strategy.

Figure 8: Two networks illustrating the need to have a cost
function evaluating the global architecture of a network.
Considering an environment with n = 2 machines perform-
ing computations in parallel, the blue network composed of
9 computational modules has a distributed computation cost
of 6 while the red network, composed of 10 modules, has a
smaller cost of 5.

Additional Architecture Details

ResNet Fabric

Based on the ResNet architecture, the structure of a ResNet
Fabric is a stack of k groups of layers, each group being
composed of 2n layers where n represents the width of the
Fabric. The feature maps size and number of filters stay
constant across the layers of each group and are modified
between groups.

Due to its linear structure, the standard ResNet architec-
ture spans a limited number of possible (sub-)architectures.
In order to increase the size of the search space, we add
several connections between groups as shown in 1a: each
block in the second to last groups receives two (for the first

and last block of each group) or three (for every other block)
inputs from preceding groups. To stay consistent with the
rest of the network, each connection is a basic block [11]
composed of 2 convolutional layers and a shortcut connec-
tion.

In our experiments, we use stacks of k = 3 blocks and
n = {3, 5, 7, 9, 18} to respectively include the ResNet-
{20, 32, 44, 56, 110} in the Fabric. Between each block, the
feature maps size is reduced by a factor of 2 and the number
of feature maps is doubled.

Convolutional Neural Fabric

The second network we use in our experiments is based on
the dense Convolutional Neural Fabrics, which can be seen
as a multi-layer and multi-scale convolutional neural net-
work. As shown in Figure 1b, this architecture has 2 axis:
The first axis represents the different columns (or width) W
of the network while the second axis corresponds to differ-
ent scales (or height) H of output feature maps, the first
scale being the size of the input images, each subsequent
scale being of a size reduced by a factor of 2 up to the last
scale corresponding to a single scalar.

Each layer (l, s) in this fabric takes its input from three
different layers of the preceding column: (i) One with a
finer scale (l− 1, s− 1) on which a convolution with stride
2 is applied to obtain feature maps having half the size of
the input, (ii) one with the same scale (l − 1, s) on which a
convolution with stride 1 is applied to obtain feature map of
the same resolution as the input and (iii) one with a coarser
scale (l − 1, s + 1) on which convolution with stride 1 is
applied after a factor 2 up-sampling to obtain feature maps
having twice the size of the input. The three feature blocks
are then added before passing through the ReLU activation
function to obtain the final output of this layer (l, s).

The first and last columns are the only two which have
vertical connections within scales of the same layer (as can
be seen in Figure 1b). This is made to allow the propaga-
tion of the information to all nodes in the first column and
to aggregate the activations of the last column to compute
the final prediction. A more detailed description of this ar-
chitecture can be found in the CNF original article.

We used two different Convolutional Neural Fabrics in
our experiments: One for the classification task (CIFAR-
10 and CIFAR-100) with W = 8 columns, H = 6 scales
and 128 filters per convolution and one for the segmenta-
tion task (Part Label) with W = 8 layers, H = 9 scales
(from 256x256 to 1x1 feature map sizes) and 64 filters per
convolution.

Additional Learning Details

Datasets

CIFAR-10. The CIFAR-10 dataset consists of 60k 32x32
images with 10 classes and 6000 images per class. The
dataset is decomposed in 50k training and 10k testing im-
ages. We split the training set following the standard, i.e
45k training samples and 5k validation samples. We use
two data augmentation techniques: padding the image to
36x36 pixels before extracting a random crop of size 32x32
and horizontally flipping. Images are then normalized in the
range [-1,1].

CIFAR100. The CIFAR-100 dataset is similar to CIFAR-
10, with 100 classes and 600 images per class. We use the
same train/validation split and data augmentation technique
as with CIFAR-10.

Part Labels. The Part Labels dataset is a subset of
the LFW dataset composed of 2927 250x250 face im-
ages in which each pixel is labeled as one of the
Hair/Skin/Background classes. The standard split contains
1500 training samples, 500 validation samples and 927
test samples. Images are zero-padded from 250x250 to
256x256. We use horizontal flipping as data augmentation.
Images are then normalized in the range [-1,1].

Learning procedure

When training our budgeted models, we first train the net-
work for 50 ”warm-up” epochs during which no sampling
is done (The whole super network is trained). After this
warm-up phase, the probability of each edge is initialized
and we start sampling architectures.

The real-valued distribution parameter associated with
each layer (and used to generate the probability of sampling
the edge) are all initialized to 3, resulting in a ≈ 0.95 ini-
tial probability once passed through the sigmoid activation
function.

On CIFAR-10 and CIFAR-100 datasets we train all mod-
els for 300 epochs. We start with a learning rate of 10−1

and divide it by 10 after 150 and 225 epochs. On Part Label
dataset all models are trained for 200 epochs with a learning
rate initialized to 10−1 and divided by 10 after 130 epochs.

For all models and all cost functions, we select the λ
hyper-parameter based on the order of magnitude m of the
maximum authorized cost C. λ is determined using cross-
validation on values logarithmically spaced between 10m−1

and 10m+1.

Forward algorithm

Given the SS-Network (E,Γ, θ) and input x, the evalua-
tion of f(x,E,Γ, θ) is done as follow :

Algorithm 1 Stochastic Super Network forward algorithm

1: procedure SSN-FORWARD(x,E,Γ, θ)
2: H ∼ Γ � as explained in Section 3.2
3: for i ∈ [1..N] do
4: li ←Ø
5: end for
6: l1 ← x
7: for i ∈ [2..N] do
8: li ←

�
k<i

ek,ihk,ifk,i(lk)

9: end for
10: return lN
11: end procedure

Additional results

Model # of sequential operations Accuracy %
ResNet [11] our/original

ResNet-110 110.00 94.09/93.57
ResNet-56 56.00 93.61/93.03
ResNet-44 44.00 93.21/92.83
ResNet-32 32.00 92.91/92.49
ResNet-20 20.00 92.19/91.25

Busgeted ResNet

B-ResNet

110.00 94.36
58.00 94.01
20.00 93.24
18.00 92.93
16.00 92.75

Convolutional Neural Fabric [25] our/original
CNF W=8 53.00 94.83/90.58
CNF W=4 31.00 93.75/87.91
CNF W=2 19.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-ResNet

31.00 94.96
25.00 94.72
21.00 94.36
18.00 93.86

Table 5: Results for Distributed computation cost on
CIFAR-10 with n = 4

Model # of sequential operations Accuracy %
ResNet [11] our/original

ResNet-110 112.00 94.09/93.57
ResNet-56 58.00 93.61/93.03
ResNet-44 46.00 93.21/92.83
ResNet-32 34.00 92.91/92.49
ResNet-20 22.00 92.19/91.25

Budgeted ResNet

B-ResNet

184.00 94.42
110.00 94.12
94.00 94.01
22.00 93.06
20.00 92.29

Convolutional Neural Fabrics [25] our/original
CNF W=8 171.00 94.83/90.58
CNF W=4 83.00 93.75/87.91
CNF W=2 39.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-CNF

98.00 95.02
50.00 94.62
45.00 94.55
39.00 94.35
33.00 93.00
26.00 92.91
18.00 92.87

Table 6: Results for Distributed computation cost on
CIFAR-10 with n = 1

Model # of sequential operations Accuracy (%)
ResNet[11]

ResNet-110 112.00 71.85
ResNet-56 58.00 70.57
ResNet-44 46.00 70.28
ResNet-32 34.00 69.28
ResNet-20 22.00 67.14

Budgeted ResNet

B-ResNet

320.00 74.35
184.00 73.85
110.00 72.88
67.00 72.02
32.00 69.60
20.00 68.48

Table 7: Results for Distributed computation cost on
CIFAR-100 with n = 1

Model # of sequential operations Accuracy %
ResNet [11] our/original

ResNet-110 110.00 94.09/93.57
ResNet-56 56.00 93.61/93.03
ResNet-44 44.00 93.21/92.83
ResNet-32 32.00 92.91/92.49
ResNet-20 20.00 92.19/91.25

Budgeted ResNet

B-ResNet

179.00 94.36
112.00 94.42
56.00 94.31
20.00 93.20
18.00 92.81

Convolutional Neural Fabric [25] our/original
CNF W=8 90.00 94.83/90.58
CNF W=4 47.00 93.75/87.91
CNF W=2 26.00 92.54/86.21
CNF W=1 12.00 89.91

Budgeted CNF

B-CNF

47.00 94.67
30.00 94.68
28.00 94.58
24.00 94.41
20.00 94.35
18.00 92.86

Table 8: Results for Distributed computation cost on
CIFAR-10 with n = 2

Model # of sequential operations Accuracy (%)
ResNe [11]

ResNet110 110.00 71.85
ResNet56 56.00 70.57
ResNet44 44.00 70.28
ResNet32 34.00 69.28
ResNet20 20.00 67.14

Budgeted ResNet

B-ResNet
179.00 74.35
112.00 73.85
49.00 71.84
29.00 69.94
22.00 69.09

Table 9: Results for Distributed computation cost on
CIFAR-100 with n = 2

