Supplementary Material for
Generative Adversarial Image Synthesis with Decision Tree Latent Controller

Takuhiro Kaneko Kaoru Hiramatsu Kunio Kashino
NTT Communication Science Laboratories, NTT Corporation
{kaneko.takuhiro, hiramatsu.kaoru, kashino.kunio}@lab.ntt.co.jp

In this supplementary material, we provide additional analysis in Section A, give details on the experimental setup in Section B, and provide extended results in Section C. We provide other supplementary materials including demo videos at http://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/dtlc-gan/.

A. Additional Analysis

A.1. Representation Comparison on Simulated Data

To clarify the limitation of the InfoGANs compared in Figure 5, we conducted experiments on simulated data. In particular, we used simulated data that are hierarchically sampled in the 2D space and have globally ten categories and locally two categories. When sampling data, we first randomly selected a global position from ten candidates that are equally spaced around a circle of radius 2. We then randomly selected a local position from two candidates that are rotated by 0.05 radians in clockwise and anticlockwise directions from the global position. Based on this local position, we sampled data from a Gaussian distribution of a standard deviation of 0.1.

We compared models that are similar to those compared in Figure 5. As the proposed model, we used the DTLC2-GAN, where $k_1 = 10$ and $k_2 = 2$. In this model, c_2, the dimension of which is $10 \times 2 = 20$, is given to the G. For comparison, we used two models in which latent code dimensions are also 20 but not hierarchical. One is the InfoGAN$_{1 \times 20}$, which has one code $c_1 \sim \text{Cat}(K = 20, p = 0.05)$, and the other is the InfoGAN$_{2 \times 10}$, which has two codes $c_1, c_2 \sim \text{Cat}(K = 10, p = 0.1)$. For DTLC2-GAN, we also compared the DTLC2-GANs with and without curriculum learning.

We show the results in Figure 10. The results indicate that InfoGANs (b, c) and DTLC2-GAN without curriculum learning (d) tend to cause unbalanced or non-hierarchical clustering. In contrast, the DTLC2-GAN with curriculum learning (e) succeeds in capturing hierarchical structures, i.e., the first-layer codes captured global ten points, whereas the second-layer codes captured local two points for each global position.

A.2. Visual Interpretability Analysis

To clarify the benefit of learned representations, we conducted two XAB tests. For each test, we compared the fourth-layer models (DTLC4-GANs or DTLC4-WGAN-GPs) with and without curriculum learning.

- **Test I: Difference Interpretability Analysis**
 To confirm whether c_L is more interpretable than z, we compared the generated images (X) with the images generated from latent variables in which one dimension of z is changed (A) and one dimension of c_L is changed (B). The changed dimension of z or c_L was randomly chosen. We asked participants which difference is more interpretable or even.

- **Test II: Semantic Similarity Analysis**
 To confirm whether c_L is hierarchically interpretable, we compared the generated images (X) with the images generated from latent variables in which one dimension of c_2 is varied (A) and one dimension of c_4 is varied (B). For each case, we fixed the higher layer codes. The changed dimension of c_2 or c_4 was randomly chosen. The lower layer codes were also randomly chosen. We asked participants which is semantically similar or even.

To eliminate bias in individual samples, we showed 25 samples at the same time. To eliminate bias in the order of stimuli, the order (AB or BA) was randomly selected. We show the user interfaces in Figure 11.

We summarize the results in Tables 5. In (a) and (b), we list the results of tests I and II, respectively, using the DTLC4-GAN$_{WS}$, which were used for the experiments discussed in Figure 7. The results of test I indicate that c_L is more interpretable than z regardless of curriculum learning. We argue that this is because z does not have any constraints on a structure and may be used by the G in a highly entangled manner. The results of test II indicate that
representations learned with curriculum learning are hierarchically categorized in a better way in terms of semantics than those without it. The results support the effectiveness of the proposed curriculum learning method.

We also conducted test II (semantic similarity analysis) for all the DTLC4-GAN-WS\textsubscript{WS} discussed in Section 6.3. We summarize the results in Table 5(c)–(e). We observed a similar tendency as those of DTLC4-GAN\textsubscript{WS}.

A.3. Unsupervised Learning on Complex Dataset

Although, in Section 6.1, we mainly analyzed unsupervised settings on the MNIST dataset, which is relatively simple, we can learn hierarchical representations in an unsupervised manner even in more complex datasets. However, in this case, learning targets depend on the initialization because such datasets can be categorized in various ways. We illustrate this in Figure 12. We also evaluated the DTLC-WGAN-GP in unsupervised settings on the CIFAR-10 and Tiny ImageNet datasets. See Section 6.3 for details.

B. Details on Experimental Setup

In this section, we describe the network architectures and training scheme for each dataset. We designed the network architectures and training scheme on the basis of techniques introduced for the InfoGAN [1]. The D and Q_{1}, \cdots, Q_{L} share all convolutional layers (Conv.), and one fully connected layer (FC.) is added to the final layer for Q_{1}, \cdots, Q_{L}. This means that the difference in the calculation cost for the GAN and DTLC-GAN is negligibly small. For discrete code c_{m}^{l}, we represented Q_{l}^{m} as softmax non-linearity. For continuous code c_{l}, we parameterized Q_{l}^{m} through a factored Gaussian.

In most of the experiments we conducted, we designed the network architectures and training scheme on the basis of the techniques introduced for the DCGAN [9] and did not use the state-of-the-art GAN training techniques to evaluate whether the DTLC-GAN works well without relying on such techniques. To downscale and upscale, we respectively used convolutions (Conv. ↓) and backward convolutions (Conv. ↑), i.e., fractionally strided convolutions, with stride 2. As activation functions, we used rectified linear units (ReLU) [8] for the G, while we used leaky rectified linear units (LReLU) [7, 10] for the D. We applied batch normalization (BNorm) [5] to all the layers except the generator output layer and discriminator input layer. We trained the networks using the Adam optimizer [6] with a mini-batch of size 64. The learning rate was set to 0.0002 for the $D/Q_{1}, \cdots, Q_{L}$ and to 0.001 for the G. The momentum term β_{1} was set to 0.5.

To demonstrate that our contributions are orthogonal to the state-of-the-art GAN training techniques, we also tested the DTLC-WGAN-GP (our DTLC-GAN with the WGAN-GP ResNet [14]) discussed in Section 6.3. We used similar network architectures and training scheme as the WGAN-GP ResNet, except for the extended parts.

The details for each dataset are given below.

B.1. MNIST

The DTLCl-GAN network architectures for the MNIST dataset, which were used for the experiments discussed in Section 6.1, are shown in Table 6. As a pre-process, we normalized the pixel value to the range $[0, 1]$. In the generator output layers, we used the Sigmoid function. We used the DTLCl-GAN, where $k_{1} = 10$ and $k_{2}, \cdots, k_{L} = 2$, i.e., which has one discrete code $c_{l}^{1} \sim \text{Cat}(K = 10, p = 0.1)$ in the first layer and N_{l} discrete codes $c_{l}^{n} \sim \text{Cat}(K = 2, p = 0.5)$ in the lth layer where $l = (2, \cdots, L)$, $n = (1, \cdots, N_{l})$, and $N_{l} = \prod_{i=1}^{l-1} k_{i}$. We added $\hat{c}_{L} \in \mathbb{R}^{\prod_{i=1}^{l} k_{i}}$ to the generator input. The trade-off parameters $\lambda_{1}, \cdots, \lambda_{L}$ were set to 0.1. We trained the networks for 1×10^{4} iterations in unsupervised settings. As a curriculum for c_{l} ($l = 2, \cdots, L$), we added regularization $-\lambda_{l} L_{\text{HCM}}(G,Q_{l})$ and sampling after $2(l-1) \times 10^{4}$ iterations.

<table>
<thead>
<tr>
<th>Model</th>
<th>z</th>
<th>c_{1}</th>
<th>c_{2}</th>
<th>c_{3}</th>
<th>c_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o curriculum</td>
<td>0.0</td>
<td>1.0 \pm 1.0</td>
<td>99.0 \pm 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W/ curriculum</td>
<td>0.0</td>
<td>1.0 \pm 1.0</td>
<td>99.0 \pm 1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Number of collected answers is 400

(a) Test I for DTLC4-GAN\textsubscript{WS} on CIFAR-10

<table>
<thead>
<tr>
<th>Model</th>
<th>c_{2}</th>
<th>c_{3}</th>
<th>c_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o curriculum</td>
<td>22.4 \pm 3.9</td>
<td>41.3 \pm 4.6</td>
<td>36.2 \pm 4.5</td>
</tr>
<tr>
<td>W/ curriculum</td>
<td>3.6 \pm 1.7</td>
<td>17.8 \pm 3.5</td>
<td>78.7 \pm 3.8</td>
</tr>
</tbody>
</table>

*Number of collected answers is 450

(b) Test II for DTLC4-GAN\textsubscript{WS} on CIFAR-10

<table>
<thead>
<tr>
<th>Model</th>
<th>c_{2}</th>
<th>c_{3}</th>
<th>c_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o curriculum</td>
<td>18.0 \pm 4.4</td>
<td>31.3 \pm 5.3</td>
<td>50.7 \pm 5.7</td>
</tr>
<tr>
<td>W/ curriculum</td>
<td>4.7 \pm 2.4</td>
<td>12.0 \pm 3.7</td>
<td>83.3 \pm 4.2</td>
</tr>
</tbody>
</table>

*Number of collected answers is 300

(c) Test II for DTLC4-GAN\textsubscript{WS}WS on CIFAR-10

<table>
<thead>
<tr>
<th>Model</th>
<th>c_{2}</th>
<th>c_{3}</th>
<th>c_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o curriculum</td>
<td>21.7 \pm 4.7</td>
<td>38.3 \pm 5.5</td>
<td>40.0 \pm 5.6</td>
</tr>
<tr>
<td>W/ curriculum</td>
<td>17.0 \pm 4.3</td>
<td>24.0 \pm 4.9</td>
<td>59.0 \pm 5.6</td>
</tr>
</tbody>
</table>

*Number of collected answers is 300

(d) Test II for DTLC4-GAN\textsubscript{WS}WS on CIFAR-10

<table>
<thead>
<tr>
<th>Model</th>
<th>c_{2}</th>
<th>c_{3}</th>
<th>c_{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/o curriculum</td>
<td>13.2 \pm 4.2</td>
<td>53.6 \pm 6.2</td>
<td>33.2 \pm 5.9</td>
</tr>
<tr>
<td>W/ curriculum</td>
<td>2.4 \pm 1.9</td>
<td>17.2 \pm 4.7</td>
<td>80.4 \pm 5.0</td>
</tr>
</tbody>
</table>

*Number of collected answers is 250

(e) Test II on DTLC4-GAN\textsubscript{WS}WS on Tiny ImageNet

Table 5. Average preference score (%) with 95% confidence intervals. We compared fourth-layer models (DTLC4-GANs or DTLC4-WGAN-GPs) with and without curriculum learning.
two parameters, i.e., gain parameter \(\gamma \), we used \(\gamma = \frac{2}{L} \) in the AC-WGAN-GP ResNet implementation \[4\], we trained the networks for \(1 \times 10^5 \) iterations. As a curriculum for \(\epsilon_l \) \((l = 2, \ldots, L)\), we added regularization \(-\lambda_l \mathcal{L}_{HCMI}(G, Q_l) \) and sampling after \(2(l - 1) \times 10^4 \) iterations.

In weakly supervised settings, we used the supervision (i.e., class labels) for \(c^l_1 \). The \(\lambda_1, \ldots, \lambda_L \) were set to 1. We trained the networks for \(1 \times 10^5 \) iterations. As a curriculum for \(\epsilon_l \) \((l = 3, \ldots, L)\), we added regularization \(-\lambda_l \mathcal{L}_{HCMI}(G, Q_l) \) and sampling after \(2(l - 2) \times 10^4 \) iterations.

B.2. CIFAR-10

The DTLC\(^L\)-GAN network architectures for the CIFAR-10 dataset, which were used for the experiments discussed in Section 6.2, are shown in Table 7. As a pre-process, we normalized the pixel value to the range \([-1, 1]\). In the generator output layers, we used the Tanh function. We used the DTLC\(^L\)-GAN\(_{\text{WS}}\) where \(k_1 = 10 \) and \(k_2, \ldots, k_L = 3 \), i.e., which has one ten-dimensional discrete code \(c^1_l \) in the first layer and \(\Pi_l \) discrete codes \(c^n_l \sim \text{Cat}(K = 3, p = \frac{1}{3}) \) in the \(l \)-th layer where \(l = (2, \ldots, L) \), \(n = (1, \ldots, \Pi_l) \), and \(\Pi_l = \prod_{i=1}^{l-1} k_i \). We added \(\epsilon_l \in \mathbb{R}^{\prod_{i=1}^{l-1} k_i} \) to the generator input. We used the supervision (i.e., class labels) for \(c^1_1 \). The trade-off parameters \(\lambda_1, \ldots, \lambda_L \) were set to 1. We trained the networks for \(1 \times 10^5 \) iterations in weakly supervised settings. As a curriculum for \(\epsilon_l \) \((l = 3, \ldots, L)\), we added regularization \(-\lambda_l \mathcal{L}_{HCMI}(G, Q_l) \) and sampling after \(2(l - 2) \times 10^4 \) iterations.

B.3. DTLC-WGAN-\(G\)

The DTLC\(^L\)-WGAN-\(G\) network architectures for the CIFAR-10 and Tiny ImageNet datasets, which were used for the experiments discussed in Section 6.3, are similar to the WGAN-\(G\) ResNet used in a previous paper \[4\], except for the extended parts. We used the DTLC\(^L\)-WGAN-\(G\), where \(k_1 = 10 \) and \(k_2, \ldots, k_L = 3 \), i.e., which has one ten-dimensional discrete code \(c^1_l \) in the first layer and \(\Pi_l \) discrete codes \(c^n_l \sim \text{Cat}(K = 3, p = \frac{1}{3}) \) in the \(l \)-th layer where \(l = (2, \ldots, L) \), \(n = (1, \ldots, \Pi_l) \), and \(\Pi_l = \prod_{i=1}^{l-1} k_i \). Following the AC-WGAN-\(G\) ResNet implementation \[4\], we used conditional batch normalization (CBN) \[2, 3\] to make the \(G \) conditioned on the codes \(\epsilon_l \in \mathbb{R}^{\prod_{i=1}^{l-1} k_i} \). CBN has two parameters, i.e., gain parameter \(\gamma_j \) and bias parameter \(b_j \), for each category, where \(j = 1, \ldots, \prod_{i=1}^{L} k_i \). As curriculum for sampling, in learning the higher layer codes, we used \(\gamma_j \) and \(b_j \) averaged over those for the related lower layer node codes.

In unsupervised settings, we sampled \(c^1_1 \) from categorical distribution \(c^1_1 \sim \text{Cat}(K = 10, p = 0.1) \). The trade-off parameters \(\lambda_1, \ldots, \lambda_L \) were set to 1. We trained the networks for \(1 \times 10^5 \) iterations. As a curriculum for \(\epsilon_l \) \((l = 2, \ldots, L)\), we added regularization \(-\lambda_l \mathcal{L}_{HCMI}(G, Q_l) \) and sampling after \(2(l - 1) \times 10^4 \) iterations.

In weakly supervised settings, we used the supervision (i.e., class labels) for \(c^1_1 \). The \(\lambda_1, \ldots, \lambda_L \) were set to 1. We trained the networks for \(1 \times 10^5 \) iterations. As a curriculum for \(\epsilon_l \) \((l = 3, \ldots, L)\), we added regularization \(-\lambda_l \mathcal{L}_{HCMI}(G, Q_l) \) and sampling after \(2(l - 2) \times 10^4 \) iterations.

B.4. 3D Faces

The DTLC\(^L\)-GAN network architectures for the 3D Faces dataset, which were used for the experiments discussed in Section 6.4, are shown in Table 8. As a pre-process, we normalized the pixel value to the range \([0, 1]\). In the generator output layers, we used the Sigmod function. We used the DTLC\(^L\)-GAN, where \(k_1 = 5 \) and \(k_2 = 1 \), i.e., which has one discrete code \(c^1_l \sim \text{Cat}(K = 5, p = 0.2) \) in the first layer and five continuous codes \(c^2_1, \ldots, c^2_5 \sim \text{Unif}(-1, 1) \) in the second layer. We added \(\epsilon_2 \in \mathbb{R}^{\prod_{i=1}^{L} k_i} \) to the generator input. The trade-off parameters \(\lambda_1 \) and \(\lambda_2 \) were set to 1. We trained the networks for \(1 \times 10^4 \) iterations in unsupervised settings. As a curriculum for \(\epsilon_2 \), we added regularization \(-\lambda_2 \mathcal{L}_{HCMI}(G, Q_2) \) and sampling after \(2 \times 10^4 \) iterations.

B.5. CelebA

The DTLC\(^L\)-GAN network architectures for the CelebA dataset, which were used for the experiments discussed in Section 6.5, are shown in Table 9. As a pre-process, we
normalized the pixel value to the range $[-1, 1]$. In the generator output layers, we used the Tanh function. We used the DTLC$_L$-GAN$_{WS}$, where $k_1 = 2$ and $k_2, \ldots, k_L = 3$, particularly where hierarchical representations are learned only for the attribute presence state. Therefore, $N_2 = 1$ and $N_l (l = 3, \ldots, L)$ is calculated as $N_l = \prod_{i=2}^{l-1} k_i$. This model has one two-dimensional discrete code in the first layer and N_l discrete codes $c_i^l \sim \text{Cat}(K = 3, p = \frac{1}{3})$ in the lth layer where $l = (2, \ldots, L)$ and $n = (1, \ldots, N_l)$. We added $\hat{c}_L \in \mathbb{R}^{1+\prod_{i=2}^{L-1} k_i}$ to the generator input. We used the supervision (i.e., an attribute label) for c_1. The trade-off parameters $\lambda_1, \ldots, \lambda_L$ were set to 0.1, 0.04 for bangs, glasses, and smiling, respectively. We trained the networks for 5×10^4 iterations in weakly supervised settings. As a curriculum for $\hat{c}_l (l = 3, \ldots, L)$, we added regularization $-\lambda_l L_{\text{HCMI}}(G, Q_l)$ and sampling after $2(l - 2) \times 10^4$ iterations.

C. Extended Results

C.1. MNIST

We give extended results of Figure 6 in Figures 13–15. We used the DTLC$_4$-GAN, where $k_1 = 10$ and $k_2, k_3, k_4 = 2$. Figure 13 shows the generated image examples using the DTLC$_4$-GAN learned without a curriculum. Figure 14 shows the generated image examples using the DTLC$_4$-GAN learned only with the curriculum for regularization. Figure 15 shows the generated image examples using the DTLC$_4$-GAN learned with the full curriculum (curriculum for regularization and sampling: proposed curriculum learning method). The former two DTLC$_4$-GANs (without the full curriculum) exhibited confusion between inner-layer and intra-layer disentanglement, while the DTLC$_4$-GAN with the full curriculum succeeded in avoiding confusion. The inner-category divergence evaluation on the basis of the SSIM in Figure 6 also supports these observations.

C.2. Simulated Data

The DTLC$_L$-GAN network architectures for the simulated data used for the experiments discussed in Section A.1, are shown in Table 10. As a pre-process, we scaled the discriminator input by factor 4 (roughly scaled to range $[-1, 1]$). We used the DTLC$_2$-GAN, where $k_1 = 10$ and $k_2 = 2$, i.e., which has one discrete code $c_1^1 \sim \text{Cat}(K = 10, p = 0.1)$ in the first layer and ten discrete codes $c_1^2, \ldots, c_1^{10} \sim \text{Cat}(K = 2, p = 0.5)$ in the second layer. We added $\hat{c}_2 \in \mathbb{R}^{1+\prod_{i=2}^{2} k_i}$ to the generator input. The trade-off parameters λ_1 and λ_2 were set to 1. We trained the networks using the Adam optimizer with a minibatch of size 512. The learning rate was set to 0.0001 for $D/Q_1, Q_2$ and G. The momentum term β_1 was set to 0.5. We trained the networks for 3×10^4 iterations in unsupervised settings. As a curriculum for \hat{c}_2, we added regularization $-\lambda_2 L_{\text{HCMI}}(G, Q_2)$ and sampling after 2×10^4 iterations.
C.2. CIFAR-10

We give extended results of Figure 7 in Figures 16–18. We used the DTLC\(^4\)-GAN\(_{WS}\), where \(k_1 = 10\) and \(k_2, k_3, k_4 = 3\). We used class labels as supervision. Figure 16 shows the generated image samples using the DTLC\(^4\)-GAN\(_{WS}\) learned without a curriculum. Figure 17 shows the generated image samples using the DTLC\(^4\)-GAN\(_{WS}\) learned only with the curriculum for regularization. Figure 18 shows the generated image samples using the DTLC\(^4\)-GAN\(_{WS}\) learned with the full curriculum (curriculum for regularization and sampling; proposed curriculum learning method). All models succeeded in learning disentangled representations in class labels since they are given as supervision; however, the former two DTLC\(^4\)-GAN\(_{WS}\) (without the full curriculum) exhibited confusion between inner-layer and intra-layer disentanglement from second- to fourth-layer codes. In contrast, the DTLC\(^4\)-GAN\(_{WS}\) with the full curriculum succeeded in avoiding confusion. The inner-category divergence evaluation on the basis of the SSIM in Figure 7 also supports these observations.

We also show the results for the DTLC\(^5\)-GAN\(_{WS}\), where \(k_1 = 10\) and \(k_2, k_3, k_4 = 3\), in Figure 19. In this model, a total of \(10 \times 3 \times 3 \times 3 \times 3 = 810\) categories were learned in a weakly supervised manner.

C.3. DTLC-WGAN-GP

We show the generated image samples using the models discussed in Section 6.3, in Figure 20–22. We used the DTLC\(^4\)-WGAN-GP, where \(k_1 = 10\) and \(k_2, k_3, k_4 = 3\). In weakly supervised settings, we used class labels as supervision. Figure 20 shows the generated image samples using the DTLC\(^4\)-WGAN-GP on CIFAR-10 (unsupervised). Figure 21 shows the generated image samples using the DTLC\(^4\)-WGAN-GP\(_{WS}\) on CIFAR-10 (weakly supervised). Figure 22 shows the generated image samples using the DTLC\(^4\)-WGAN-GP on Tiny ImageNet (unsupervised).

C.4. 3D Faces

We give extended results of Figure 8 in Figure 23. Similarly to Figure 8, we compared three models, the InfoGAN\(_{CS}\), which is the InfoGAN with five continuous codes \(c_1^5, \ldots, c_2^5 \sim \text{Unif}(-1, 1)\) (used in the InfoGAN study [1]), InfoGAN\(_{C1D1}\), which is the InfoGAN with one categorical code \(c_1^1 \sim \text{Cat}(K = 5, p = 0.2)\) and one continuous code \(c_2^1 \sim \text{Unif}(-1, 1)\), and DTLC\(^2\)-GAN, which has one categorical code \(c_1^1 \sim \text{Cat}(K = 5, p = 0.2)\) in the first layer and five continuous codes \(c_1^2, \ldots, c_5^2 \sim \text{Unif}(-1, 1)\) in the second layer. In the InfoGAN\(_{CS}\) and InfoGAN\(_{C1D1}\), the individual codes tend to capture independent and exclusive semantic features because they have a flat relationship, while in the DTLC\(^2\)-GAN, lower layer codes learn category-specific (in this case, pose-specific) semantic features conditioned on higher layer codes.

C.5. CelebA

We show the generated image examples using the models discussed in Section 6.5, in Figures 24–26. We used the DTLC\(^4\)-GAN\(_{WS}\), where \(k_1 = 2\) and \(k_2, k_3, k_4 = 3\), and particularly hierarchical representations are learned only for the attribute presence state. We show the results for bangs, glasses, and smiling in Figures 24, 25, and 26, respectively. These results indicate that the DTLC-GAN\(_{WS}\) can learn attribute-specific hierarchical interpretable representations by only using the supervision of the binary indicator of attribute presence.

We also show the generated image examples and image retrieval examples using the DTLC\(^4\)-GAN\(_{WS}\), where \(k_1 = 2\) and \(k_2, k_3, k_4 = 3\), in Figures 27 and 28, respectively. We show the results for glasses. In this model, a total of \(1 + 1 \times 3 \times 3 \times 3 = 28\) categories were learned in a weakly supervised setting. These results indicate that more detailed semantic features were captured in the lower layers. As quantitative evaluation of image retrieval, we calculated attribute-specific SSIM scores. The scores for \(c_1, c_2, c_3\), and \(c_4\) were 0.188, 0.257, 0.266, and 0.267, respectively. These results indicate that as the layer becomes lower, the correspondence rate in attribute-specific areas becomes larger and support the qualitative observations.

References

Figure 10. **Evaluation on simulated data:** (a) We used simulated data, which have globally ten categories and locally two categories. In (b), $10 \times 10 = 100$ categories are learned at the same time. In (c)(d), 20 categories are learned at the same time, causing unbalanced and non-hierarchical clustering. In (e), ten global categories are first discovered then two local categories are learned. Upper left: kernel density estimation (KDE) plots. Others: samples from real data or models. Same color indicates same c_1 category.

Figure 11. **User interfaces for XAB tests:** (a) Samples in “Image: A” are generated from latent variables in which one dimension of \hat{c}_L is changed. Samples in “Image: B” are generated from latent variables in which one dimension of z is changed. (b) Samples in “Image: A” are generated from latent variables in which one dimension of z is changed. Samples in “Image: B” are generated from latent variables in which one dimension of \hat{c}_L is changed. (c) Samples in “Image: A” are generated from latent variables in which c_4 is varied. Samples in “Image: B” are generated from latent variables in which c_2 is varied. (d) Samples in “Image: A” are generated from latent variables in which c_4 is varied. Samples in “Image: B” are generated from latent variables in which c_2 is varied.
Figure 12. **Representation comparison between two models that are learned in fully unsupervised manner with different initialization:** In (a), samples are generated from one model, while, in (b), samples are generated from another model. In each row, c^1 and c^2 are varied per three images and per image, respectively. In this setting, learning targets (in (a), hair style and in (b), pose) depend on initialization because this dataset can be categorized in various ways.

Figure 13. **Manipulating latent codes in DTLC4-GAN (learned without curriculum) on MNIST:** In results noted with c_l ($l = 1, \cdots, 4$), each column includes five samples generated from same c_1, \cdots, c_l but different z and random c_{l+1}, \cdots, c_L. In each block, each row contains samples generated from same z and c_1 but different c_2, \cdots, c_L. In particular, c_i ($i = 2, \cdots, l-1$) was varied per $\prod_{j=1}^{l-1} k_j$ images, and c_l was varied per image. c_i ($i = l+1, \cdots, L$) was randomly chosen.
Figure 14. Manipulating latent codes in DTLC4-GAN (learned only with curriculum for regularization) on MNIST: View of figure is same as that in Figure 13

Figure 15. Manipulating latent codes in DTLC4-GAN (learned with full curriculum) on MNIST: View of figure is same as that in Figure 13
Figure 16. **Manipulating latent codes in DTLC14-GAN\textsubscript{WS} (learned without curriculum) on CIFAR-10:** In each block, each column includes five samples generated from same c_1, \cdots, c_4 but different z. Each row contains samples generated from same z and c_1 but different $c_2, c_3,$ and c_4. In particular, $c_2, c_3,$ and c_4 were varied per nine images, per three images, and per image, respectively. Among all blocks, samples in ith row ($i = 1, \cdots, 5$) share same z.
Figure 17. Manipulating latent codes in DTLC$^{+}$-GANW (learned only with curriculum for regularization) on CIFAR-10: View of figure is same as that in Figure 16
Figure 18. Manipulating latent codes in DTLC3-GAN\textsubscript{ws} (learned with full curriculum) on CIFAR-10: View of figure is same as that in Figure 16
Figure 19. Manipulating latent codes in DTLC^2-GAN_{WS} (learned with full curriculum) on CIFAR-10: View of figure is similar to that in Figure 16. Total of $10 \times 3 \times 3 \times 3 \times 3 = 810$ categories were learned in weakly supervised setting.
Figure 20. Manipulating latent codes in DTL.C^4-WGAN-GP on CIFAR-10: View of figure is similar to that in Figure 16. All categories \((10 \times 3 \times 3 \times 3 = 270)\) were learned in fully unsupervised setting.
Figure 21. Manipulating latent codes in DTLC4-WGAN-GP$_{WS}$ on CIFAR-10: View of figure is similar to that in Figure 16. All categories ($10 \times 3 \times 3 \times 3 = 270$) were learned in weakly supervised setting.
Figure 22. **Manipulating latent codes in DTLC\(^2\)-WGAN-GP on Tiny ImageNet:** View of figure is similar to that in Figure 16. All categories \((10 \times 3 \times 3 \times 3 = 270)\) were learned in fully unsupervised setting.
Figure 23. **Manipulating latent codes on 3D Faces:** In each block, each column includes five samples generated from same latent codes but different noise. Each row contains samples generated from same noise and same discrete codes but different continuous codes (varied from left to right). In tandem blocks, samples in ith row ($i = 1, \cdots, 5$) were generated from same noise. (a) In InfoGAN$_{C5}$, each continuous code c_1, \cdots, c_5 captures independent and exclusive semantic features (e.g., orientation of lighting in c_1^1 and elevation in c_2^1). (b) In InfoGAN$_{C1D1}$, discrete code c_1^1 captures pose, while continuous code c_2^1 captures orientation of lighting regardless of c_1^1. Also in this model, each code captures independent and exclusive semantic features. (c) In DTLC2-GAN, discrete code c_1^1 captures pose, and continuous codes c_2^1, \cdots, c_5^1 capture detailed variations for each pose. In this model, lower layer codes learn category-specific (in this case, pose-specific) semantic features conditioned on higher layer codes.
Figure 24. Manipulating latent codes in DTLC3-GAN$_{WS}$ on CelebA (bangs): Each column includes five samples generated from same c_1, c_2, and c_3 but different z. In (a), samples are generated from $c_1^{(1)} = 1$, i.e., attribute is absent. In this case, hierarchical representations are not learned. In (b), samples are generated from $c_1^{(2)} = 1$, i.e., attribute is present. In this case, hierarchical representations are learned. In each row, c_2 and c_3 are varied per three images and per image, respectively.

Figure 25. Manipulating latent codes in DTLC3-GAN$_{WS}$ on CelebA (glasses): View of figure is same as that in Figure 24.

Figure 26. Manipulating latent codes in DTLC3-GAN$_{WS}$ on CelebA (smiling): View of figure is same as that in Figure 24.
Figure 27. **Manipulating latent codes in DTLC4-GAN$_{WS}$ on CelebA (glasses):** View of figure is similar to that in Figure 24. Total of \(1 + 1 \times 3 \times 3 \times 3 = 28\) categories were learned in weakly supervised settings.

Figure 28. **Hierarchical image retrieval using DTLC4-GAN$_{WS}$ on CelebA (glasses)**