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1. Additional Details of Training Objective
As derived in [2, 1], in Bayesian Regression, the KL diver-

gence between a approximate variational posterior q(ω) and
the true posterior p(ω|X,Y ) distribution of models likely to
have generated our data is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∫
q(ω) log p(Y |X,ω)dω.

(A1)

In our case, as we train our model to predict future bounding
box sequences given the past bounding box sequence, past
and future vehiche odometry, we have X = {Bp,Of,Op}
and Y = {Bf}. Therefore, the KL divergence is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∫
q(ω) log p(Bf|Bp,Of,Op, ω)dω.

(A2)

As the bounding box at time t+ n in Bf is predicted condi-
tioned on the bounding box at time t + n − 1 and the past
bounding box sequence, past and future vehiche odometry,
by our Bayesian RNN Encoder-Decoder, the KL divergence
is given by,

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

−
∑
t

∫
q(ω) log p(bt+n

t |bt+n−1
t ,Bp,Op,Of, ω)dω.

(A3)

During training (as mentioned in subsection 3.5 of the main
paper), we use Monte-Carlo integration to estimate the inte-
gral in (A3) (using N samples),

KL(q(ω) || p(ω|X,Y )) ∝ KL(q(ω) || p(ω))

− 1

N

∑
t

N∑
i=0

log p(bt+n
t |bt+n−1

t ,Bp,Op,Of, ω̂i),

ω̂i ∼ q(ω).

(A4)

The probability term p(bt+n
t |bt+n−1

t ,Bp,Op,Of, ω̂i) takes
the form e−‖b̂

t+j
i −bt+j

i ‖22 (Σ̂t+j
i )−2

. Therefore, replacing the
log probability term with the exponential squared error term
and introducing additional regularization as mentioned in
subsection 3.5 of the main paper leads to the training objec-
tive used,

1

4N

N∑
i=1

n∑
j=1

‖b̂t+j
i − bt+j

i ‖
2
2(Σ̂t+j

i )−2 + λ
∑
W
‖Wk‖2 + log σ̂2

i

2. Additional Details of Two Stream Model
Here, we include details of each layer of our Two Stream

Model. We refer to fully connected layers as Dense and Size
refers to the number of neurons in the layer.
Bayesian Bounding Box Prediction Stream. We provide
the details of the Bayesian Bounding Box prediction stream
in Table 1.

Layer Type Size Activation Input Output

In1 Input Bpast EMB1

In2 Input Opast EMB1

EMB1 Dense 64 ReLU {In1, In2} LSTMenc1

LSTMenc1 LSTM 128 tanh EMB1 EMB2

EMB2 Dense 64 ReLU
{

LSTMenc1, Ôf

}
LSTMdec1

LSTMdec1 LSTM 128 tanh EMB2 Out1
Out1 Dense 4 LSTMdec B̂f

Table 1: Details of the Bounding Box Prediction Stream.
Note that, the weights of all the layers are sampled from the
approximate posterior q(ω).

Odometry Prediction Stream. We provide the details of
the odometry prediction stream in Table 2. We then provide
details of the CNN encoder.

3. Database Statistics
In Figure 1 we plot the number of pedestrian tracks of

lengths from 6 to 30. The track length distribution is consis-
tent across training and test sets. We observe that there are



Layer Type Size Activation Input Output

In3 Input Opast LSTMenc2

LSTMenc2 LSTM 128 tanh In3 LSTMdec2

LSTMdec2 LSTM 128 tanh {LSTMenc1,FC3} Out1
Out2 Dense 2 LSTMdec2 Ôf

Table 2: Details of the Odometry Prediction Stream. Details
of the CNN encoder (with output FC3) follows in Table 3

Layer Type Filters Size Activation Input Output

In4 Input C1

C1 Conv 32 3×3 ReLU In2 C2

C2 Conv 32 3×3 ReLU C1 P1

P1 MaxPool 2×2 C2 C3

C3 Conv 64 3×3 ReLU P1 C4

C4 Conv 64 3×3 ReLU C4 P2

P2 MaxPool 2×2 C4 C5

C5 Conv 128 3×3 ReLU P2 C6

C6 Conv 128 3×3 ReLU C5 P3

P3 MaxPool 2×2 C6 C7

C7 Conv 256 3×3 ReLU P3 C8

C8 Conv 256 3×3 ReLU C7 C8

P4 MaxPool 2×2 C8 C9

C9 Conv 512 3×3 ReLU P4 C10

C10 Conv 512 3×3 ReLU C9 P5

P5 MaxPool 2×2 C10 FC1

FC1 Dense 1024 ReLU P5 FC2

FC2 Dense 256 ReLU FC1 FC3

FC3 Dense 128 tanh FC2 LSTMdec2

Table 3: Details of the CNN encoder used to condition the
output of the Odometry prediction stream. Conv stands for
2D convolution, MaxPool stands for 2D max pooling and
UpSample stands for 2D upsampling operations.

Figure 1: Length of recovered pedestrian tracks in
Cityscapes.

many long tracks which stretch over the entire length (30) of
the sequence.

4. Evaluation with Varying Size of LSTM

Method LSTM size Odometry MSE L
LSTM 128 None 650 7.77
LSTM 512 None 705 8.15

LSTM-Bayesian 128 None 618 4.13
LSTM-Bayesian 512 None 619 4.16

Table 4: Evaluation with varying size of LSTM (|Bp| = 8).

In the main paper, we evaluate all models constant LSTM
vector size of 128. Here, we report results for the (uncondi-
tioned) one stream homoscedastic LSTM encoder-decoder
model and the one stream Bayesian LSTM encoder-decoder
model using a vector size of 512 In Table 4. We see that
the homoscedastic version with 512 neurons performs worse
than the version with 128 neurons. This is because the larger
LSTM over-fits to the bounding box estimation noise in
dataset. However, the Bayesian versions have comparable
performance, due to dropout which prevents overfitting.

5. Visualization of Odometry Prediction
Visual examples of odometry prediction in Figure 2.

6. Additional Evaluation of our Two-stream
Model

Method Streams Visual MSE L
LSTM Two RGB 516 5.15

LSTM-Aleatoric Two RGB 618 4.92
LSTM-Bayesian Two RGB 505 3.92

Table 5: Evaluation of Two-stream models (|Bp|, |Op| = 8).

Here, we compare our Bayesian Two-stream model (Fig-
ure 2, of main paper) to, 1. A homoscedastic Two-stream
LSTM encoder-decoder model (LSTM). 2. A heteroscedas-
tic Two-stream LSTM encoder-decoder (LSTM-Aleatoric).
Note that, both models have the same odometry prediction
stream as our Bayesian Two-stream LSTM model (LSTM-
Bayesian). The results mirror the evaluation of only the
bounding box prediction stream. We see that the het-
eroscedastic LSTM (LSTM-Aleatoric, 2nd row) outperforms
the homoscedastic LSTM (2nd row) with respect to the L
metric. This means that the heteroscedastic Two-stream
LSTM learns to capture uncertainty and assigns higher prob-
ability to the true bounding box sequence. However, when
epistemic uncertainty is not modelled, aleatoric uncertainty
tried to compensate and this leads to poorer MSE. Finally,
our Bayesian Two-stream LSTM (3rd row) outperforms all
other methods.



Figure 2: Odometry prediction: We show predicted odometry for 15 time-steps as points (bottom to top) over-layed on the last
visual observation. The distance and angle between subsequent points is the predicted (proportional) speed and steering angle.
Color codes: Blue: Ground-truth, Red: Kalman Filter, Yellow: Our LSTM without visual input, Green: Our LSTM with visual
input.

7. Additional Analysis of the Quality of our Un-
certainty Metric

Figure 3: Plot 1 - uncertainty versus squared error, plot 3 -
uncertainty versus maximum observed squared error.

We compare the quality of the uncertainty metric obtained
with our Two-stream LSTM-Bayesian model (Figure 3, of
main paper) to that of the Two-stream LSTM-Aleatoric (the
heteroscedastic Two-stream LSTM encoder-decoder in the

previous section, which models only aleatoric uncertainty).
In plot 1 of Figure 3 the aleatoric uncertainty to the log
squared error of the mean of the predictive distribution of
the Two-stream LSTM-Aleatoric model is shown. We see
that the distribution is more spread-out with more outliers
compared to our Two-stream LSTM-Bayesian model (plot 1,
Figure 3, of main paper). In plot 2 of Figure 3 the maximum
log squared error (of the mean of the predictive distribution)
observed at a certain predicted uncertainty in the test test is
shown for both our Two-stream Bayesian model and Two-
stream LSTM-Aleatoric. We see that the correlation is poor
compared to our Two-stream LSTM-Bayesian model (also in
plot 3, Figure 3, of main paper). In particular, the maximum
observed log squared error rises very sharply. Therefore, for
a robust error bound it is essential to model both epistemic
and aleatoric uncertainty.



8. Additional Video Results
We include video results of prediction in video.mp4. We

include examples of both point estimates and predictive
distributions. We include point estimates for comparison
against the Kalman Filter and One-stream baselines. The ex-
amples show accurate prediction by our Two-stream model
over 15 time-steps into the future.
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