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1. Additional Details of our “Best of Many”
Sample Objective

Here we provide additional details of our “Best of Many”
samples objective and include additional qualitative results.
We begin with the formal statement of the First Mean Value
Theorem of Integration [1]. The First Mean Value Theorem
of Integration states that, if f1 : [a, b] → R is continuous
and f2 is an integrable function that does not change sign on
[a, b], then ∃z′ ∈ (a, b) such that,∫ b

a

f1(z) f2(z) dz = f1(z
′)

∫ b

a

f2(z) dz (S1)

The data log-likelihood Equation (3) in the main paper,
estimated using importance sampling using a recognition
network qφ is given by,

log(pθ(y | x)) =

log
(∫

pθ(y|z, x)
p(z|x)

qφ(z|x, y)
qφ(z|x, y) dz

)
.

(S2)

We apply the First Mean Value Theorem of Integration to
derive Equation (4) in the main paper, which is,

log(pθ(y|x)) = log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

+ log
( p(z′|x)
qφ(z′|x, y)

)
, z′ ∈ (a, b).

(S3)

To do this, we set f1(z) = p(z|x)/qφ(z|x,y) and f2(z) =
pθ(y|z, x)×qφ(z|x, y) (from the data log-likelihood in (S2)).
The integral in (S2) can be very well approximated on a large
enough bounded interval [a, b]. This leads to,(∫ b

a

pθ(y|z, x)
p(z|x)

qφ(z|x, y)
qφ(z|x, y) dz

)
=

p(z′|x)
qφ(z′|x, y)

(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)
.

(S4)

Taking log on both sizes of (S4) leads to (S3). We can further
lower bound (S3), leading to Equation (5) in the main paper,
which is,

log(pθ(y|x)) ≥ log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

+ min
z′∈(a,b)

(
log
( p(z′|x)
qφ(z′|x, y)

)) (S5)

However, as mentioned in the main paper, the minimum in
(S5) is difficult to estimate. Therefore, we use the following
approximation. From (S3), we know that ∃z′ ∈ (a, b) which
lower bounds the data log-likelihood. To maximize this
data log-likelihood, we would like to maximize log(f1(z

′)).
However, as we do not know z′, we instead choose to maxi-
mize it for a set of N points in (a, b),

log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

+ log
( p(z′1|x)
qφ(z′1|x, y)

)
+ ..+ log

( p(z′N |x)
qφ(z′N |x, y)

)
.

(S6)

As values of both p and qφ are bounded above by 1, the
value of the function f2(z′i) = p(z′i|x)/qφ(z′i|x,y) is likely to
be low when is p low and qφ is high. Therefore, to give
more importance to such points z′i, we weight each point by
qφ(z

′
i|x, y),

log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

+ qφ(z
′
1|x, y)× log

( p(z′1|x)
qφ(z′1|x, y)

)
+ . . .+ qφ(z

′
N |x, y)× log

( p(z′N |x)
qφ(z′N |x, y)

)
.

(S7)
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Flipping the sign before the terms in the second part of (S7),

log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

− qφ(z′1|x, y)× log
(qφ(z′1|x, y)

p(z′1|x)

)
− . . .− qφ(z′N |x, y)× log

(qφ(z′N |x, y)
p(z′N |x)

)
.

(S8)

If we choose a sufficiently large set of points z′i ∈ (a, b), we
can collect the terms in the second part of (S8) and replace
them with a single integral,

log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

−
∫ b

a

qφ(z|x, y)× log
(qφ(z|x, y)

p(z|x)

)
dz.

(S9)

The second integral in (S9) is the KL divergence between
the two distributions qφ(z|x, y) and p(z|x),

log
(∫ b

a

pθ(y|z, x) qφ(z|x, y) dz
)

−DKL(qφ(z|x, y) ‖ p(z|x)).
(S10)

We can estimate the data log-likelihood term in (S10) using
Monte-Carlo integration. This leads to the “Many Sample”
objective from the main paper,

L̂MS = log
( 1

T

T∑
i=1

pθ(y|ẑi, x)
)

−DKL(qφ(z|x, y) ‖ p(z|x)), ẑi ∼ qφ(z|x, y).

(S11)

As mentioned in the main paper, we use the re-
parameterization trick [2] to sample from our recognition
network qφ. Therefore, the recognition network predicts the
mean and variance N (µ, σ) of the Gaussian distribution qφ
from which the latent variable z is sampled. Thus, we can
directly use the predicted µ, σ to estimate the KL divergence
as in [2].

Approximating the data log-likelihood term in the first
part of (S11) as shown in the main paper, leads to our “Best
of Many” sample objective.

2. Additional Details of our Models
Here, we include details of each layer of our models.

2.1. Model for Structured Trajectory Prediction

We provide the details of our structured trajectory pre-
diction model in Table 1. Followed by the details of the
recognition network (qφ) in Table 2. We refer to fully con-
nected layers as Dense and Size refers to the number of
neurons in the layer.

Layer Type Size Activation Input Output

In1 Input x EMB1

EMB1 Dense 32 ReLU In1 LSTMenc

LSTMenc LSTM 48 tanh EMB1 EMB2

EMB2 Dense 64 ReLU {LSTMenc, qφ} LSTMdec

LSTMdec LSTM 48 tanh EMB2 Out1
Out1 Dense 2 LSTMdec ŷ

Table 1: Details our model for Structured Trajectory Predic-
tion. The details of the recognition network qφ used during
training follows in Table 2.

Layer Type Size Activation Input Output

In2 Input y EMB3

EMB3 Dense 64 ReLU In2 LSTMrec

LSTMrec LSTM 128 tanh EMB3 {D1,D2}
D1 Dense 64 LSTMrec µ
D2 Dense 64 LSTMrec σ

Table 2: Details of the recognition network used during
training of our model for Structured Trajectory Prediction.

2.2. Extension with Visual Input

This model is similar to the model for Structured Tra-
jectory Prediction, expect that the LSTMdec is additionally
conditioned on the output of an CNN encoder. The details
are in Table 3 and Table 4. We use the same recognition
network as described previously in subsection 2.1.

Layer Type Filters Size Activation Input Output

In2 Input C1

C1 Conv 32 3×3 tanh In2 P1

P1 MaxPool 2×2 C1 C2

C2 Conv 64 3×3 tanh P1 P2

P2 MaxPool 2×2 C2 C3

C3 Conv 128 3×3 tanh P2 P3

P3 MaxPool 2×2 C3 C4

C4 Conv 256 3×3 tanh P3 P4

P4 MaxPool 2×2 C4 FC1

FC1 Dense 1024 tanh P4 FC2

FC2 Dense 32 tanh FC1 EMB2

Table 3: Details of the CNN encoder used with the extended
Structured Trajectory Prediction model with Visual Input.
Conv stands for 2D convolution, MaxPool stands for 2D max
pooling and UpSample stands for 2D upsampling operations.



Layer Type Size Activation Input Output

In1 Input x EMB1

EMB1 Dense 32 ReLU In1 LSTMenc

LSTMenc LSTM 48 tanh EMB1 EMB2

EMB2 Dense 64 ReLU {LSTMenc,FC2} EMB3

EMB3 Dense 64 ReLU {EMB2, qφ} LSTMdec

LSTMdec LSTM 64 tanh EMB3 Out1
Out1 Dense 2 LSTMdec ŷ

Table 4: Details our model for extended Structured Tra-
jectory Prediction model with Visual Input. The details of
the recognition network qφ used during training follows in
Table 5.

Layer Type Size Activation Input Output

In3 Input y EMB4

EMB4 Dense 64 ReLU In3 LSTMrec

LSTMrec LSTM 128 tanh EMB3 {D1,D2}
D1 Dense 64 LSTMrec µ
D2 Dense 64 LSTMrec σ

Table 5: Details of the recognition network used during
training of our extended Structured Trajectory Prediction
model with Visual Input.

2.3. Model for Structured Image Sequence Predic-
tion

We provide the details of our structured image sequence
prediction model in Table 6. Followed by the details of the
recognition network (qφ) in Table 7. In contrast to the model
for structured trajectory prediction, we use Convolutional
LSTMs and Convolutional Embedding layers.

Layer Type Filters Size Input Output

In1 Input x CEMB1

CEMB1 Conv 32 3×3 In1 P1

P1 MaxPool 2×2 CEMB1 CLSTMenc1

CLSTMenc1 CLSTM 32 3×3 P1 P2

P2 MaxPool 2×2 CLSTMenc1 CLSTMenc2

CLSTMenc2 CLSTM 64 3×3 P2 CEMB2

CEMB2 Conv 32 3×3 {CLSTMenc2, qφ} CLSTMdec1

CLSTMdec1 CLSTM 64 3×3 CEMB2 U1

U1 UpSample 2×2 CLSTMdec1 CLSTMdec2

CLSTMdec2 CLSTM 64 3×3 U1 U2

U2 UpSample 2×2 CLSTMdec2 Out1
Out1 Conv 32 3×3 U2 Out2
Out2 Conv 1 3×3 Out1 ŷ

Table 6: Details our model for Structured Image Sequence
Prediction. CLSTM stands for 2D Convolutional LSTM,
Conv stands for 2D convolution, MaxPool stands for 2D
max pooling and UpSample stands for 2D upsampling opera-
tions. The details of the recognition network qφ used during
training follows in Table 7.

Layer Type Filters Size Input Output

In2 Input y CEMB3

CEMB3 Conv 32 3×3 In2 P3

P3 MaxPool 2×2 CEMB3 CLSTMrec1

CLSTMrec1 CLSTM 32 3×3 P3 P4

P4 MaxPool 2×2 CLSTMrec1 CLSTMrec2

CLSTMrec2 CLSTM 64 3×3 P4 {C1,C2}
C1 Conv 64 3×3 CLSTMrec2 µ
C2 Conv 64 3×3 CLSTMrec2 σ

Table 7: Details of the recognition network used during train-
ing of our model for Structured Image Sequence Prediction.
CLSTM stands for 2D Convolutional LSTM, Conv stands
for 2D convolution, MaxPool stands for 2D max pooling and
UpSample stands for 2D upsampling operations.

3. Additional Results
We show additional qualitative results on the HKO dataset

in Figure 1 at t+ 5, t+ 10 and t+ 15. We generate T = 50
samples and show the sample closest to the groundtruth
(Best), the mean of all the samples and the per-pixel variance
in the samples. As in the main paper, the qualitative exam-
ples demonstrate that our model produces samples which are
close to the groundtruth (comparing the Best sample and the
groundtruth) and diverse samples (comparing the difference
between the mean of the samples and the Best sample).
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Figure 1: Statistics of samples generated by our LSTM-BMS model on the HKO dataset.


