
Appendix A. Merge ordering
For a merge operation, the order that each U(i) is merged

determines the total flop count and memory needs. When d
is small, a sequential merging is commonly applied. How-
ever, when d is large, we propose a hieratical merging

approach instead. For instance, Figures 7a and 7b show
the two merge orderings when d = 4, arriving at a to-
tal of 2I1I2R3 + 2I1I2I3R3 + 2I1I2I3I4R2 flops to con-
struct U(1,2,3,4) using a sequential ordering, and 2I1I2R3+
2I3I4R3 + 2I1I2I3I4R2 flops using a hierarchical order-
ing. To see how both methods scale with Ik and d, if and
d = 2D, then a sequential merging gives and Both quanti-
ties are upper bounded by 4R3Ĩd which is a factor of 4R3

times the total degrees of freedom.
We can generalize this analysis by proving theorem 1.

Proof. 1. Define Ĩ = I1 = · · · = Id. Any merging order
can be represented by a binary tree. Figures 7a and 7b
show the binary trees for sequential and hierarchical
merging; note that they do not have to be balanced, but
every non-leaf node has exactly 2 children. Each U (i)

corresponds to a leaf of the tree.
To keep the analysis consistent, we can say that the
computational cost of every leaf is 0 (since nothing is
actually done unless tensors are merged).
At each parent node, we note that the computational
cost of merging the two child nodes is at least 2 ⇥ that
required in the sum of both child nodes. This is triv-
ially true if both children of a node are leaf nodes. For
all other cases, define D the number of leaf node de-
scendents of a parent node. Then the computational
cost at the parent is 2R3 · ĨD. If only one of the two
child nodes is a leaf node, then we have a recursion

2R3 · ĨD = 2R3Ĩ · ĨD�1 � 4R3(ĨD�1)

which is always true if Ĩ � 2. If both children are
not leaf nodes, then define D1, and D2 the number
of leaves descendant of two child nodes, with D =
D1 +D2. Then the recursion is

2R3 · ĨD = 2R3ĨD1 ĨD2 � 4R3(ĨD1 + ĨD2)

where the bound is always true for Ĩ � 2 and
D1, D2 � 2. Note that every non-leaf node in the
tree necessarily has two children, it can never be that
D1 = 1 or D2 = 1.
The cost of merging at the root of the tree is always
2R3Ĩd = 2R3I . Since each parent costs at least 2⇥ as
many flops as the child, the total flop cost must always
be between 2R3I and 4R3I .

2. For the storage bound, the analysis follows from the
observation that the storage cost at each node is R2ĨD,

where D is the number of leaf descendants. Therefore
if Ĩ � 2, the most expensive storage step will always
be at the root, with R2(Ĩd1 + Ĩd2 + Ĩd) storage cost,
where d = d1 + d2 for any partition. Clearly, this
value is lower bounded by R2Ĩd = R2I . And, for
any partition d1 + d2 = d, for Ĩ � 2, it is always
Ĩd1 + Ĩd2  Ĩd. Therefore the upper bound on storage
is 2R2Ĩd = 2R2I .

3. It is sufficient to show that for any d power of 2, a
sequential merging is more costly in flops than a hier-
archical merging, since anything in between has either
pure sequential or pure hierarchical trees as subtrees.

Then a sequential merging gives 2R3
Pd
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If additionally d = 2D for some integer D > 0, then
a hierarchical merging costs 2R3
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flops.
To see this, note that in a perfectly balanced binary tree
of depth D, at each level i there are 2D�i nodes, each
of which are connected to 2i leaves.

We now use induction to show that whenever d is a
power of 2, hierarchical merging (a fully balanced bi-
nary tree) is optimal in terms of flop count. If d = 2,
there is no variation in merging order. Taking d = 4,
a sequential merging costs 2R3(Ĩ3 + Ĩ3 + Ĩ4) and a
hierarchical merging costs 2R3(2Ĩ2 + Ĩ4), which is
clearly cheaper. For some d a power of 2, define S the
cost of sequential merging and H the cost of hierar-
chical merging. Define G = 2R3Ĩ2d the cost at the
root for any binary tree with 2d leaf nodes. (Note that
the cost at the root is agnostic to the merge ordering.)
Then for d̂ = 2d, a hierarchical merging costs 2H+G
flops. The cost of a sequential merging is

S + 2R3Ĩd
dX

i=1

Ĩi = S + 2R3Ĩd�1
dX

i=2

Ĩi +G

= S + SĨd�1 +G� 2R3d.

Since 2R3d is the cost at the root for d leafs, S >
2R3d, and therefore the above quantity is lower
bounded by G + Ĩd�1S, which for d � 2 and Ĩ � 2,
is lower bounded by G+2S. By inductive hypothesis,
S > H , so the cost of sequential merging is always
more than that of hierarchical merging, whenever d is
a power of 2.

Appendix B. Initialization
If x and y are two independent variables, then Var[xy] =

Var[x]Var[y] + Var[x](E[y])2 + Var[y](E[x])2 [1]. Thus a
product of two independent symmetric distributed random
variables with mean 0 and variance �2 itself is symmetric
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Figure 7: Merge ordering for a 4th order tensor ring segment of shape R ⇥ I1 ⇥ I2 ⇥ I4 ⇥ I4 ⇥ R, with tensor ring rank R.
In each node from top to bottom are tensor notation, tensor shape, and flops to obtain the tensor.

distributed with mean 0 and variance �4 (not Gaussian dis-
tribution). Further extrapolating, in a matrix or tensor prod-
uct, each entry is the summation of R independent variables
with the same distribution. The central limit theorem gives
that the sum can be approximated by a Gaussian N (0, R�4)
for large R. Thus if all tensor factors are drawn i.i.d. from
N (0,�2), then after merging d factors the merged tensor
elements will have mean 0 and variance Rd�2d.


