Appendix A. Merge ordering

For a merge operation, the order that each U(*) is merged
determines the total flop count and memory needs. When d
is small, a sequential merging is commonly applied. How-
ever, when d is large, we propose a hieratical merging
approach instead. For instance, Figures 7a and 7b show
the two merge orderings when d = 4, arriving at a to-
tal of 2]1[2R3 + 2[1[2]3R3 + 2]1[2[3[4R2 ﬂOpS to con-
struct U(12:3%) using a sequential ordering, and 21, I, R® +
2134 R3 + 211 [, 151, R? flops using a hierarchical order-
ing. To see how both methods scale with I}, and d, if and
d = 2P, then a sequential merging gives and Both quanti-
ties are upper bounded by 4R3T% which is a factor of 4R?
times the total degrees of freedom.

We can generalize this analysis by proving theorem 1.

Proof. 1. Define I = I = --- = I;. Any merging order
can be represented by a binary tree. Figures 7a and 7b
show the binary trees for sequential and hierarchical
merging; note that they do not have to be balanced, but
every non-leaf node has exactly 2 children. Each U(®)
corresponds to a leaf of the tree.

To keep the analysis consistent, we can say that the
computational cost of every leaf is O (since nothing is
actually done unless tensors are merged).

At each parent node, we note that the computational
cost of merging the two child nodes is at least 2 x that
required in the sum of both child nodes. This is triv-
ially true if both children of a node are leaf nodes. For
all other cases, define D the number of leaf node de-
scendents of a parent node. Then the computational
cost at the parent is 2R - I”. If only one of the two
child nodes is a leaf node, then we have a recursion

2R® . IP = 2R3 - TP~ > 4R3(IP 1)

which is always true if I > 2. If both children are
not leaf nodes, then define D, and Dy the number
of leaves descendant of two child nodes, with D =
D1 + Ds. Then the recursion is

2R? - IP = 2R3 [P2 > 4R3 (TP 4 [P2)

where the bound is always true for I > 2 and
D,,Ds > 2. Note that every non-leaf node in the
tree necessarily has two children, it can never be that
D1 =1lor D2 =1.

The cost of merging at the root of the tree is always
2R3J4 = 2R3I. Since each parent costs at least 2x as
many flops as the child, the total flop cost must always
be between 2R31 and 4R31.

2. For the storage bound, the analysis follows from the
observation that the storage cost at each node is R2[D,

where D is the number of leaf descendants. Therefore
if T > 2, the most expensive storage step will always
be at the root, with R2(I% + 9 + [) storage cost,
where d = dj + do for any partition. Clearly, this
value is lower bounded by R2[4 = R2J. And, for
any partition dy + dy = d, for I > 2, it is always
T4 4 92 < J4 Therefore the upper bound on storage
is 2R2T? = 2R?].

3. It is sufficient to show that for any d power of 2, a
sequential merging is more costly in flops than a hier-
archical merging, since anything in between has either
pure sequential or pure hierarchical trees as subtrees.

Then a sequential merging gives 2R3 Zfzg I flops.
If additionally d = 2P for some integer D > 0, then
a hierarchical merging costs 2R3 Y>2 , 2P~ 12" flops.
To see this, note that in a perfectly balanced binary tree
of depth D, at each level i there are 2°~% nodes, each
of which are connected to 2¢ leaves.

We now use induction to show that whenever d is a
power of 2, hierarchical merging (a fully balanced bi-
nary tree) is optimal in terms of flop count. If d = 2,
there is no variation in merging order. Taking d = 4,
a sequential merging costs 2R3(I° 4+ I® + I*) and a
hierarchical merging costs 2R3(21? + I*), which is
clearly cheaper. For some d a power of 2, define .S the
cost of sequential merging and H the cost of hierar-
chical merging. Define G = 2R3I?? the cost at the
root for any binary tree with 2d leaf nodes. (Note that
the cost at the root is agnostic to the merge ordering.)
Then for d = 2d, a hierarchical merging costs 2H + G
flops. The cost of a sequential merging is

d d
S+2R3I~d2ﬂ S+2R3I~d—12fi+G
=1 =2

= S+ 81"+ G —2R3d.

Since 2R3d is the cost at the root for d leafs, S >
2R3d, and therefore the above quantity is lower
bounded by G + I9~1S, which for d > 2 and I > 2,
is lower bounded by G + 2.S. By inductive hypothesis,
S > H, so the cost of sequential merging is always
more than that of hierarchical merging, whenever d is
a power of 2.

O

Appendix B. Initialization

If 2 and y are two independent variables, then Var[zy] =
Var[z]Var[y] + Var[z](E[y])? + Var[y](E[z])? [I]. Thus a
product of two independent symmetric distributed random
variables with mean 0 and variance o itself is symmetric



UD % U x UG x U@
Dim: Rx I1 x Iy x I3 x Iy X R
Flops: 211151314 R?

/ AN
UD x U@ x U
Dim: R><11><12><13><R
FlOpSZ 2]1]2]3R3

/ AN
U x u®

Dim: RX[lXIQXR
Flops: 2I,1,R?

et N

um u®
Dim: Rx 1 x R Dim: Rx Ihb x R

u“
Dim: Rx Iy x R

u®)
Dim: Rx I3 x R

(a) Sequential merging

UD % U x UG x U@
Dim: RX11X12X13XI4XR
Fl()pSZ 2[1[2[3[4R3

il ~
UL % U@ UG x U
Dim: Rx I; x Iy x R Dim: Rx I3 x I4 x R
Flops: 21,1,R? Flops: 21314 R3
um u® u® u“

Dim: Rx I} x R Dim: Rx I, x R Dim: Rx I3 x R Dim: Rx I, x R

(b) Hierarchical merging

Figure 7: Merge ordering for a 4th order tensor ring segment of shape R x I} x Iy x Iy X I4 x R, with tensor ring rank R.
In each node from top to bottom are tensor notation, tensor shape, and flops to obtain the tensor.

distributed with mean 0 and variance o (not Gaussian dis-
tribution). Further extrapolating, in a matrix or tensor prod-
uct, each entry is the summation of R independent variables
with the same distribution. The central limit theorem gives
that the sum can be approximated by a Gaussian A/ (0, Ro*)
for large R. Thus if all tensor factors are drawn i.i.d. from
N(0,0?), then after merging d factors the merged tensor
elements will have mean 0 and variance R%o2?.



