Appendix A. Merge ordering

For a merge operation, the order that each \(I^{(i)} \) is merged determines the total flop count and memory needs. When \(d \) is small, a sequential merging is commonly applied. However, when \(d \) is large, we propose a hierarchical merging approach instead. For instance, Figures 7a and 7b show the two merge orderings when \(d = 4 \), arriving at a total of \(2I_1I_2R^3 + 2I_1I_3I_4R^3 + 2I_1I_2I_4R^3 \) flops to construct \(I^{(1,2,3,4)} \) using a sequential ordering, and \(2I_1I_2R^3 + 2I_3I_4R^3 + 2I_1I_2I_4R^3 \) flops using a hierarchical ordering. To see how both methods scale with \(d \) and \(d \), if and \(d = 2^D \), then a sequential merging gives and Both quantities are upper bounded by \(4R^3I^d \) which is a factor of \(4R^3 \) times the total degrees of freedom.

We can generalize this analysis by proving theorem 1.

\textbf{Proof.} 1. Define \(\tilde{I} = I_1 = \cdots = I_d \). Any merging order can be represented by a binary tree. Figures 7a and 7b show the binary tree for sequential and hierarchical merging: note that they do not have to be balanced, but every non-leaf node has exactly 2 children. Each \(U^{(i)} \) corresponds to a leaf of the tree. To keep the analysis consistent, we can say that the computational cost of every leaf is 0 (since nothing is actually done unless tensors are merged).

At each parent node, we note that the computational cost of merging the two child nodes is at least \(2 \times \) that required in the sum of both child nodes. This is trivially true if both children of a node are leaf nodes. For all other cases, define \(D \) the number of leaf node descendants of a parent node. Then the computational cost at the parent is \(2R^3 \cdot \tilde{I}^D \). If only one of the two child nodes is a leaf node, then we have a recursion

\[2R^3 \cdot \tilde{I}^D = 2R^3 \tilde{I} \cdot \tilde{I}^{D-1} \geq 4R^3 (\tilde{I}^{D-1}) \]

which is always true if \(\tilde{I} \geq 2 \). If both children are not leaf nodes, then define \(D_1 \), and \(D_2 \) the number of leaves descendant of two child nodes, with \(D = D_1 + D_2 \). Then the recursion is

\[2R^3 \cdot \tilde{I}^D = 2R^3 \tilde{I}^{D_1} \tilde{I}^{D_2} \geq 4R^3 (\tilde{I}^{D_1} + \tilde{I}^{D_2}) \]

where the bound is always true for \(\tilde{I} \geq 2 \) and \(D_1, D_2 \geq 2 \). Note that every non-leaf node in the tree necessarily has two children, it can never be that \(D_1 = 1 \) or \(D_2 = 1 \).

The cost of merging at the root of the tree is always \(2R^3 \tilde{I}^d = 2R^3 I \). Since each parent costs at least \(2 \times \) as many flops as the child, the total flop cost must always be between \(2R^3 I \) and \(4R^3 I \).

2. For the storage bound, the analysis follows from the observation that the storage cost at each node is \(R^2 \tilde{I}^D \), where \(D \) is the number of leaf descendants. Therefore if \(\tilde{I} \geq 2 \), the most expensive storage step will always be at the root, with \(R^2 (\tilde{I}^d + \tilde{I}^{d-2} + \tilde{I}^d) \) storage cost, where \(d = d_1 + d_2 \) for any partition. Clearly, this value is lower bounded by \(R^2 \tilde{I}^d = R^2 I \). And, for any partition \(d_1 + d_2 = d \), for \(\tilde{I} \geq 2 \), it is always \(\tilde{I}^d + \tilde{I}^{d-2} \leq \tilde{I}^d \). Therefore the upper bound on storage is \(2R^2 \tilde{I}^d = 2R^2 I \).

3. It is sufficient to show that for any \(d \) power of 2, a sequential merging is more costly in flops than a hierarchical merging, since anything in between has either pure sequential or pure hierarchical trees as subtrees.

Then a sequential merging gives \(2R^3 \sum_{i=2}^{d} \tilde{I}^i \) flops. If additionally \(d = 2^D \) for some integer \(D > 0 \), then a hierarchical merging costs \(2R^3 \sum_{i=2}^{D} 2^{D-i} \tilde{I}^i \) flops. To see this, note that in a perfectly balanced binary tree of depth \(D \), at each level \(i \) there are \(2^{D-i} \) nodes, each of which are connected to \(2^i \) leaves.

We now use induction to show that whenever \(d \) is a power of 2, hierarchical merging (a fully balanced binary tree) is optimal in terms of flop count. If \(d = 2 \), there is no variation in merging order. Taking \(d = 4 \), a sequential merging costs \(2R^3 (\tilde{I}^3 + \tilde{I}^2 + \tilde{I}) \) and a hierarchical merging costs \(2R^3 (2I^2 + \tilde{I}^2) \), which is clearly cheaper. For some \(d \) a power of 2, define \(S \) the cost of sequential merging and \(H \) the cost of hierarchical merging. Define \(G = 2R^3 I^d \) the cost at the root for any binary tree with \(2d \) leaf nodes. (Note that the cost at the root is agnostic to the merge ordering.) Then for \(d = 2^d \), a hierarchical merging costs \(2H + G \) flops. The cost of a sequential merging is

\[S + 2R^3 \tilde{I}^d \sum_{i=1}^{d} \tilde{I}^i = S + 2R^3 \tilde{I}^{d-1} \sum_{i=2}^{d} \tilde{I}^i + G \]

\[= S + S \tilde{I}^{d-1} + G - 2R^3 d. \]

Since \(2R^3 d \) is the cost at the root for \(d \) leaves, \(S > 2R^3 d \), and therefore the above quantity is lower bounded by \(G + \tilde{I}^{d-1} S \), which for \(d \geq 2 \) and \(\tilde{I} \geq 2 \), is lower bounded by \(G + 2S \). By inductive hypothesis, \(S > H \), so the cost of sequential merging is always more than that of hierarchical merging, whenever \(d \) is a power of 2.

\[\square \]

Appendix B. Initialization

If \(x \) and \(y \) are two independent variables, then \(\text{Var}[x|y] = \text{Var}[x] \text{Var}[y] + \text{Var}[x](\mathbb{E}[y])^2 + \text{Var}[y](\mathbb{E}[x])^2 [1] \). Thus a product of two independent symmetric distributed random variables with mean 0 and variance \(\sigma^2 \) itself is symmetric.
distributed with mean 0 and variance σ^4 (not Gaussian distribution). Further extrapolating, in a matrix or tensor product, each entry is the summation of R independent variables with the same distribution. The central limit theorem gives that the sum can be approximated by a Gaussian $\mathcal{N}(0, R\sigma^4)$ for large R. Thus if all tensor factors are drawn i.i.d. from $\mathcal{N}(0, \sigma^2)$, then after merging d factors the merged tensor elements will have mean 0 and variance $R^d\sigma^{2d}$.

Figure 7: Merge ordering for a 4th order tensor ring segment of shape $R \times I_1 \times I_2 \times I_4 \times I_4 \times R$, with tensor ring rank R. In each node from top to bottom are tensor notation, tensor shape, and flops to obtain the tensor.