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Abstract

In this supplementary material we detail here the proofs of the results presented in the paper.

2. Generic fast patch matching algorithm
2.3. Random search

In the following, we will say that ) € {U, > a}, n being a k-set of elements, if and only if U, (n) > «
(U, being defined in Def. (2.1)).

Lemma 2.6 Forall z € A, C(z,.) is a non-increasing function such that for ¢ > 0, C(z,¢) € [0,1] and
C(z,e) =1fore <0.

Proof Let us recall the definition of C"

C(z,a) = sup Q(n,{U, = a}). (22)
ne{U.>a}

The function C'(z, -) is a supremum of probabilities (in fact it is a maximum because the set {U, > €} is
finite). We remind the property for a candidate 7, Q(7, L) < 1 if the set of acceptable list of candidates
L is not empty. Thus C(z,¢) € [0,1], for all z € A and € > 0. Since inf U, = 0, the probability of
transitioning to a negative energy is 0, and thus C(z,¢) = 1 fore < 0. If £1,e5 € R are such that
€1 > eg9, we have {U, > e1} C {U, > e3}. Therefore for all i a set of candidates of B, because @ is a
stochastic kernel, Q(n, {U, > e1}) < Q(n,{U. > e2}). This implies that

sup  Q(n{U.2e}) < sup Q(n{U.2e}) < sup  Q(n{U:>e}). (23)
ne{U.>e1} ne{Us>e1} ne{U.>e}

and therefore C(z,e1) < C(z,¢2). B



3. Convergence of the patch matching algorithms
For the proof of Lemma 3.1, we will use the following lemma and its subsequent corollary.

Lemma 3.0.1 Let y, x be real random variables (x with pdf f according to Lebesgue measure u) and E
an event of the form s; €la;,+o0[, a; € R, fori € [1, N|. We assume that y is conditionally independent
from E given x. Then forany Y, X:
PlyeYl|r € X,E) < sup P(y € Y|x). (24)
rzeX

Proof The proof follows from Bayes rule and the conditional independence between y and E:

Py eY,z € X|E) 1 /
PlyeYlre X, F) = = Ply e Y|z, F d
(yeYla ) Pz € X|E) P € XIB) Joox (y € Yl|a, E) f(z)dp(x)
1 1
= Py € Y|x)f(z)du(x) < sup P EYxi/ z)du(x).
(25)

|
Corollary 3.0.2 Let yy, ..., Yn, X1, ..., Tn, be real random variables and E an arbitrary random event

of the form defined in Lemma 3.0.1. We assume that for all i € [1,n], given x;, y; is conditionally
independent from E, x; and y;, for j # i. Then for any Y;, X;:

P (Vi € [i,n],y; € Yi|Vi € [1,n],2; € X;, E) < H sup P(y; € Yi|x). (26)
=1 zeX;

Proof Using Bayes rule,

P (Vi € [i,n],y; € Yil[Vi € [1,n],2; € X;, E) 27)

= H]P)(y7 S }/Z|v] € [[Ln]]alvj € XjaEvvk € [171 - 1ﬂzyk S Yk) (28)
i=1

< H sup P(y; € Yi|x) (29)
i:lmexi

where the last inequality is given by the application of Lemma 3.0.1 on each term of the product. B
3.1. Energy decay in the nth step

Lemma 3.1 (Constraints propagation) Consider an assignment o™ resulting from an iteration of
Algorithm 1. Then for each pair of nodes x,z € V,

Us(pp™) 2 e = U(lth) > €200, (30)

where the levels ¢, . > 0 are as follows. For the ancestors of x (i.e. P(z,x) # () the levels ¢, ,, are
defined via the following recursion starting from x and following the inverse propagation order:

be () AL{U, > 6y,x}>} 31)

Y St z~yY

€54 = inf {UZ(G)

Exz =E.

For the rest of the nodes ¢, , = —1.



Proof We start by observing the following property of the merge operator. Consider a node y € V and
two sets of candidates patches &, n. Then it is easy to show that

€] >k and Uy(§) <e = Uy(merge;j(fUn)) <e. (32)

The proof of the lemma is trivial for the nodes that are not ancestors of x. To prove it for the ancestors
we proceed by induction starting from x and following the inverse propagation order. Let z, a node in the
query image A, be an ancestor of . We assume that the statement holds for the nodes preceding z in the
inverse propagation order (or equivalently those succeeding z with the propagation order).

In particular let y be a child of 2, i.e. z ~ y, and assume that cp"H/ = {Uy > €y.2 }. The candidates
@ZH/ result from the propagation from the parents of y, among them is z. By (32) it follows that if

Uy(A, ") < ey, then Uy (g n+1/2) < €z, violating our assumption. Thus, necessarily
Uy(@ZJrl/Q) Zeyr = Us(A; 7y@z H > Eya = ‘PZJrl €A, {U €y} (33)

Since this holds for all children y of z, we have that

prtte (AL AUy > ey0} = L, (34)
2~y
Therefore
U.(o2™) 2 infU. (LS ,) ie. ot e{U.>¢ey.} (35)

In the case of the nearest neighbor search, we can directly use the Lj s instead of having to use the
upper level sets defined by the €, ;s in the following proof for a tighter bound. l

Theorem 3.2 (Point-wise convergence) Consider the field of candidate matches at iteration n, p".
Define o™ by applying an iteration of the Generic PatchMatch in Algorithm 1. Then, for all € > 0, for
all x € A, we have

P(Ua(03") > &) <PUs(2) 2 &) [] (Colz::0)" D Ch(z,000)) (36)
zEA

where (1(z) was defined in (5) as the number of parents of node z and C; denotes the worst case transition
probability for kernel Q;, as in Egq. (8).

Proof We consider a topological ordering of the nodes in the query image. Given two nodes z,y € A,
we use the notation z < y if z precedes y. We denote by y — 1 and y + 1 the nodes before and after y in
the ordering.

The proof consist on a recursion on the ordered set of nodes. For y € A we define the following

events:
Sy : Vz > Y, Uz(@?) > Ez,x
(37)
Py i Vi<y, Un(elt) e

The event S, restricts the candidates at iteration n of the nodes succeeding y, whereas the event P,
considers the candidates at iteration n + 1 of the nodes preceding vy.
From Lemma 3.1 we have that: U, (¢"") > ¢ = V2, U, (¢?"!) > ¢, . Taking probabilities

P(Us (o th) 2 &) SP(Vz, U.(92) 2 e20) S P(Po s Sa). (38)



The last equality holds because for z > « as the level €, ,, is defined as —1. Therefore the conditions
over ¢+ or " for such nodes are trivially satisfied.
We proceed by showing that the following recursive relation holds for any node y:

P(Py ; Sy) < P(,nyl 5 Sy,1)01 (yagy,a:)c2(y75y,m)u(y)- (39)

The result then follows by applying this recursion backwards from z until the first node in the topological
ordering. To show (39) we note that P(P, ; S,) = P(Py_1; Sy ; Uy(£pt!) > e,.). Since oyt
results from a propagation step 7, we have that

Uy(oy™) 2 eya = Uy(mergey (o2 U S19y712)) > ey

= Uy(pt'?) > ey 0 and Uy (S190™/?) > €40, (40)

Thus we have the following inequality:

P(Py; Sy) SP(Py—1; Sy; Uyl n+1/2) 2 ey Uy(Sh ‘Pn+1/2)
< PU, (51 90n+1/2) yo | Py—135 Sy Uylp n+1/2)

P(Py—1: Sy Uyly n+1/2) 2 &ya)

<sup{Q1y(n AUy Zey2}) : n€{Uy = ey a}} P(Py—1; Sy ; Uy(‘PZ+1/2) 2 eya)
< 1Yy )PPy Sy 5 Uy ™7%) > ). (41)

The third inequality comes from the application of Lemma 3.0.1. The last step follows from the definition
of C in (8). We continue by noticing that,

2
=

Uy(‘PZ+1/2) 2 Eya = Uy(mergel';(spz U U A, ySDz+1 U U SaA, y%oz ) Eyx =

z~y z~y
U (‘Py) Ey,x 3 Vz ~y, Uy(Az ySOZJrl) Ey,x 3 Vz ~y, Uy(S2 z y@z ) €y (42)

To simplify the notation, in the following we will drop the subscripts from A, ,. The implication (42),
yields the following

P(Py-1; Sy; Uy(en™/?) > ey0)
SP(Py-1; Sy; V2~y, U (ASDH—H) Ey,zs (52A<p”+1) Eyz s Uy(‘PZ) 2 €ya)
< IPJ(,Py—l 5 Sy—l s Vz oy, y(A¢z+1) Z €y, y(SZASOz 1) P Ey,m)
SP(Vz ~y, Uy(S2Apl™) > ey | Pyo1; Sy—15 Ve~ y, Uy (Apl ™) >y 1)
P(Py1; Sy-1;Varvy, Uy(Aplt!) > ey.)

< H sup {QQ y(’?a {U €y, x}) ne {U Ey, r}}

zroy
P(Py-1; Sy—1; V2 ~y, U (A@z ) Eyz)
< Ca(y, (U, > Ey,w}w(x)P(rpyfl i Sy—13 Var~vy, U, (A¢n+1) Ey,z)
< Caly, {Uy > &y o P OP(Py 15 Syma). (43)

In the third step we have applied Corollary 3.0.2, whereas the forth step results from the definition of Cl.
The recursion (39) follows from (41) and (43). &



Remark The proof is based on the fact that, due to the propagation, restricting the energy of the
candidates at x implies constraints on the candidates of its ancestors (Lemma 3.1). We then bound
the probability of all random samples drawn to satisfy those constraints. The more restrictive those
constraints are, the smaller the probability of satisfying them. The Lemma in 3.1 establishes that
¢t € {U, > e, .}. However, during the proof of Lemma 3.1 it is shown that the candidate sets
@7 belong to a set L< ,, which can be smaller than {U, >e. .} (ie. LS, C {U. > ¢, }. A tighter
bound can be derived by considering this more restrictive constraint, and bounding the probability of
S g@?+1/2 € LZ . In the cases of k-sets, the set Lf , is a set of k-sets, and it is difficult to evaluate the
probability of sampling a k-set in that set. This difficulty disappears for k = 1. Then L; , C B, and
computing the probability of sampling in the allowed set becomes easier. Thus a tighter bound can be
computed for k = 1.

Theorem 3.3 Consider the field of candidate matches at iteration n, ©". Define "+ by applying an
iteration of the Generic PatchMatch in Algorithm 1. Then, for all € > 0 we have

PN oo > 2) BVl =€) [T (Calz )9 (z,)) (44)
zEA
Proof The proof is similar to the one of Theorem 3.2 where instead of using Lemma 3.1 we use

1U(¢" ) |oo = e, i€ Vo € A, Up(p2T1) >c. 1

Corollary 3.4 Assume that for any pair (1,€) of sets of k candidate matches Q1(n,&) > 0 (or
Q2(n, &) > 0). Let (¢™) be a sequence defined by Algorithm 1. Then Vx € A,E[U,(¢")] —— 0 and
n—oo

E[IU (") oe] —— 0.

Proof We will show the convergence in the mean for a single node x € A, i.e. E[|U,(¢%)|]] —— 0.
n—oo

We recall that for a non-negative random variable X, E[X] = [ _ P(X > z). Then we have:

BT (2] = BV = [ PO+ 2 9) 45)
g / H (02(27EZ’I)M(Z)CI(ZaEZ,z)) ]P(UI(QOZ) 2 E) (46)
e>0 2€A
<[ Col,e)"@Ci(x,e) P(UL(¢]) = €) (47)
e>0
w(w)
<[ (wewa)  (swawa)reez @
e>0 \a>0 a>0
w(x)
< (sup C’g(m,a)> (sup Cl(ﬂc,a)>/ P(U,(oF) =€) (49)
a>0 a>0 e>0
w()
< <Sup C’g(x,a)> (sup Cl(x,a)) E[Ux(¢2)]- (50)
a>0 a>0

Since Q1(n,&) > 0, for all n,£, we have that Q1(n, {U, = 0}) > 0 for any 5. In the discrete
case (the one only one considered for this theorem) the sup is achieved and is not 1. Therefore
SUp,so C1(x,a) = maxyso C1(z, @) < 1 and the convergence follows. With a similar derivation
can be used to show the convergence of the L., norm of the whole NNF. B



4. Specific PatchMatch algorithms
4.1. The original PatchMatch algorithm

Proposition 4.1 The specific basic PatchMatch algorithm described in this section algorithm converges
in probability to a NNF which minimizes the energy, namely

lim P(U,(¢?) > ¢) =0,Ve >0,z €A, (51)

n— oo

with a geometric convergence rate.
Moreover for all € > 0, for all x € A, we have that

P(U (92 ) > &) <PWL(e) 2 &) [T (1= (1= C'leiena))") (52)
z€EA
with
C'(z,a) =sup Q' (n,{U. > a}). (53)
n

For oo > 0 we can guarantee that C'(z,«) < 1.

Proof The bound in Theorem 3.2 applies. We now express C; in terms of the new C’. For that, we
compute an upper bound for P(U,(S1¢7) = a | U,(¢?) > a, E) witha > 0 and E any event, Vz € A.
We first remark that, if S%¢ is the ™ sample generated from the random sampling around ¢,

k
P(U.(S192) 2 a| Ua(9}) 2 0, B) = 1 = [[P(U.(S1¢2) < a|Un(el) 2 0, E). (54
=1

For a candidate ¢ € S107,

P(U.(¢) 2 a| U.(¢Y) 2 a, E) < sup  Q(n,{U: > a}) (55)
ne{U.>a}

Let us remind that  and S7 are k-sets, i.e. sets of k distinct candidates. The candidates in S are
sampled centered at the best candidate in 7 (the one minimizing U,). We know that n € {U, > a},
which only constrains the worst candidate in 7, but says nothing about the best candidate. This is why for
this proof there is no restriction on where the sample comes from. Therefore, with

sup Q' (n,{U. > a}) =: C'(z,a) (56)
n
we have
PU.(¢) < a|U.(¢?) > a, E) 21~ C'(z,a) (57)
and
P(U.(S197) 2 a | U.(¢?) 2 a,E) <1—(1—C'(z,a))". (58)

Since the support of the random search is the full image, it guarantees that Vz € A, Va > 0,C’(z,a) <
1. This implies that the bound found is strictly inferior to one and therefore the convergence is insured. ll



Corollary 4.2 In the case of the search of the nearest neighbor, the upper bound can be written as

P(U,(om+) <] €' (2 22)P(Us () > 2). (59)
zZEA
with
C'(z,a):= sup Q' (n,{U, > a}). (60)
ne{U.>a}

This bound is actually tighter than the one derived in []].

Proof The derivation of the tighter bound presented in Equation (59) is the same as in Proposition 4.1.
The difference comes from the that in the case &£ = 1, the best current match is also the worst current
match therefore the element used to sample is necessarily with an energy larger than ¢, ;.

The second part of the proof concerns the comparison with the bound of [1]. The difference between
the bound (59) and the one in [1] lies in the levels €, , inside the factors C’. The levels used in [1] are of
the form € — £, ,, where ¢, ., is defined as follows:

l,»= min chlcl L (61)

c€EP(z,x)

with P(z, z) being the set of all the paths from z to x in the graph and d., ¢, , = ||U;;, — Ue,_, © Ao
Therefore, due to the monotonicity of C’ we just have to show thate, , > € — £, ;.

Forz =1z,e,, = € and £, , = 0O therefore the property is verified. Suppose now that the property
is true for any y such that y > z. We will show that in this case the property stays true for z. Suppose
that e, , < € — £, ;. Because ¢, , = infU,(LS ), this means that it exists € L% . such that

z,x

U.(n) < e —{, . Let y be the child of z such that EZ,:,; =y + d. 4. In this case we have that
UM +dyy<e—Lp+dsy (62)
therefore
Uy(An) U () +dsy <& — 1y . (63)

We then have found € L; , i.e. Anp € {U, > €, .} therefore g, , < Uy(An) < € — £, , which is
contradictory with the hypothesis. The property is then also valid for z. B

Remark The tighter bound for the specific case of k¥ = 1 mentioned in the Remark after the proof of
Theorem 12 applies in this case as well, yielding a bound for the original PatchMatch that is tighter than
the one from Proposition 4.1. We compared both bounds and in practice the difference between them is
small. For our experiments in the paper we have used a bound similar to the one of the Proposition 4.1.

4.2. The CSH algorithm

Lemma 4.4 If H is (R, cR, p1, p2)-sensitive then an OR family G created using n functions from H is
(R,cR,1— (1 —p1)™,1— (1 — py)™)-sensitive.

Proof Let p, g such that |[p — ¢|| < Rand g € G generated by hq, ..., h, € H with H (R, cR, p1,p2)-
sensitive.

Pg(g(p) # 9(q)) = P (ha1(p) # P1(),- -, hn(P) # ha(q)) (64)



Because the h;s are independent,

n

Prc(ha(p) # h1(q),- - hn(p) # (@) = [ [ Pre(Pi(p) # hi(9)) (65)

i=1

Using the (R, cR, p1, p2)-sensitive property of H, for all 4

Py (hi(p) # hi(q)) = 1 — Py (hi(p) = hi(q)) (66)
<1l-p (67)
Therefore
Pg(g(p) # 9(q)) < (1 —p1)" (68)
and
Pg(g(p) = g(q)) 21— (1 —p1)". (69)

Using similar derivation, the corresponding result can be proved for the second part of the sensitive
definition. This result in G an OR family function being (R, cR,1 — (1 — p1)™,1 — (1 — p2)™)-sensitive.
|

Proposition 4.5 For a (R, cR, p1, p2)-sensitive family of hashing functions such that R > max,eca K,
(see Definition 2.1), the sequence (©™) defined by the CSH algorithm converges in probability to a
minimizer of the total energy, in the sense that

lim P(U,(¢}) =€) =0,Ve >0,z € A, (70)

n— oo

with a geometric convergence rate. Moreover for all € > 0, for all x € A,

P(U.(gi ™) > ) P(Ua(¢}) =€) [ Colz, {U: = 220" f(pr, 220}, (71)
z€EA

where f(a,8) = (1 —a¥) ife, . > 0, 1 otherwise.

From a set of LSH hash functions #, a OR family of function G can also be defined. The function
g € G is based on a set of n random functions h1, . . ., h, from A such that for all p, ¢, g(p) = g(q) if
and only if there exist ¢ € [1,n] such that h;(p) = h;(q).

Proof Let R > max,ca K, and H an (R, cR, p1, p2)-sensitive family of functions. Consider also G an
OR family function based on # so that a function from G is generated using at least k functions from .
An upper bound for P(U,(S147) > a | E) witha > 0, Yz € A and E an undefined event will now be
derived.

Firstly,

Vp € B, p— 2 < R= P(h(p) = h(z)) > p1. (72)

R is then chosen such that for all z € A, ||z — Ni(x)| < R, where Ni(x) € B is the k'™ nearest
neighbor of . This property is true for the I nearest neighbor N;(z), with [ < k. Therefore we have
P(h(N;(z)) = h(x)) > p1. Moreover the binning is independent from the current matching 7.



For a given h € H and H' C H such that h € H’, for a query ¢, forallp € B
h(q) = h(p) = 30" € H', W (q) = h'(p) (73)
Therefore for alist H' = {hy,...,hx} C H, foraquery ¢, forallp € B

hi(q) = hi(p1),- .., hi(q) = hi(pn) = (3h € H', h(q) = h(p1)), ..., (3h € H',h(q) = h(pk))
(74)
and

P(h1(q) = hi(p1),- - -, hi(q) = hi(pn))
<SP(3h e H' h(q) = hp1)),-.., (3h € H' h(q) = h(pr))) (75)

When working with the elements of the OR family G, we can define H' as the set functions from H used
to generate g (H' verifies the properties of the previously used H’ because at least k functions are used
to generate each element of G),

Pg(9(q) = 9(p1),--.,9(q) = 9(pn))
= PH((E”?' S H/’ h(Q) = h(pl))v ) (Elh' S H/a h(Q) = h(pn)))

> Py (h1(q) = hi(p1), .- ha(q) = hn(pn)) (76)
which leads to

Pg(9(q) = 9(p1),---,9(q) = g(pr)) = Py (hi(q) = hi(p1), ..., hi(q) = hi(pr)) (77)

because the h; are independent

k
Pg(g(q) = g9(p1),---,9(q) = g(pn)) = HPH(hi(q) = hi(pi)) = pi (78)

when using the original LSH property for /. This implies that

P(U,(S1¢7) = 0) =Pg(g(q) = g(p1),---,9(a) = g(pa)) = P§ (79)

Finally, P(U(S10%) > a | E) <1 - P(Us(S1¢7) < a| E) < 1~ B(Un(Si0}) = 0| B) < 1 p}
Replacing C1 (2, ¢), for € A and € > 0, by (1 — p¥) in the proof of Theorem 3.2 gives the result in
Proposition 4.5. W
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