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1. Architectures
We provide in this section a detailed description of the networks used for our experiments. For the digit datasets, the

encoders follow the standard architectures commonly used in unsupervised domain adaptation [2].

Figure 1, left: architectures of ES and EI used for MNIST↔ USPS and SVHN→MNIST.

Figure 1, right: architectures of ES and EI used for SYN→ SVHN.

Figure 2, left: architecture of S used for all the experiments.

Figure 2, right: architecture of D1 used for all the experiments.

Figure 3, left: architecture of D2 used for SVHN→MNIST and SYN→ SVHN.

Figure 3, right: architecture of D2 used for MNIST↔ USPS and NYUD (RGB→ D).

Concerning ES and EI used in the NYUD experiment, we relied on a pretrained VGG-16 [4], following the protocol used
by Tzeng et al. [6]. We cut it at fc7, which was shrieked to be 128-dim and modified with tanh activations. The classifier C
consists in an additional 19-dimensional softmax layer.

Summarizing, we found out that D2 should be built with two or three hidden layers to stabilize the minimax game against EI

(whose structure must be the same as ES). We designed an S that proved to be reliable in all experiments; to play a balanced
minimax game, we found out that a one-hidden-layer neural network as a discriminator (D1) is an optimal choice. The size
of the hidden layer depends on the problem, and can be determined by observing the stability of the training procedure.

2. Hyperparameters
We report in this section the hyperparameters used in the different Steps of the training procedures. Note that hyperpa-

rameters were set in order to reach the convergence of the GAN [3] minimax games, no cross-validation using target labels
was performed.

2.1. Digits

For each training Step, we used a batch size of 64 samples. The learning rate was set to 3 · 10−4 for Step 0, 1 · 10−4 for
Step 1 and 3 · 10−5 for Step 2, in all experiments except MNIST↔ USPS, where was set to 3 · 10−6.
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2.2. NYUD

In Step 0, the network is not trained from scratches: following the protocol described in [6], we fully fine-tune a VGG-16
network [4] (pre-trained on ImageNet [1]) for 20.000 iterations, in order to have a comparable baseline model. Batch size is
32 (instead of 128) due to hardware limitations. The learning rate were 10−4 for Step 0, 10−5 for Step 1 and 10−7 for Step 2.

3. Ablation study
In the ablation study presented in the paper, we evaluate DI LS-ADDA, short for Domain Invariant Least Squares ADDA,

i.e. our method without performing feature augmentation through S. Figure 4 depicts the two Steps of such algorithm. The
architectures of the modules and hyperparameters are the same as in the full pipeline.

Figure 1. Architectures used for C ◦ ES and C ◦ EI (C ◦ E for simplicity) in the MNIST↔ USPS (P1-P2) and in the SVHN→MNIST
(left) experiments, with the different values of Dropout [5] indicated (D), and in the SYN→ SVHN experiment (right). The classification
module (C) is a simple fully-connected + softmax layer.



Figure 2. Architectures used for S (left) and for D1 (right), with the size of the features generated and of the hidden layer indicated,
respectively.

Figure 3. Architectures used for D2 in SVHN→MNIST and SYN→ SVHN (left), and in NYUD and MNIST↔ USPS (right).



Figure 4. DI LS-ADDA. Domain invariance is enforced by feeding both target and source data to EDI . The feature augmentation module
S is removed from the full pipeline. EDI has the same architecture as EI and D of D2.
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