Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Supplementary Material

Riccardo Volpi¹, Pietro Morerio¹, Silvio Savarese², Vittorio Murino^{1,3} {riccardo.volpi,pietro.morerio,vittorio.murino}@iit.it, ssilvio@stanford.edu

¹Pattern Analysis & Computer Vision - Istituto Italiano di Tecnologia ²Stanford Vision and Learning Lab - Stanford University ³Computer Science Department - Università di Verona

1. Architectures

We provide in this section a detailed description of the networks used for our experiments. For the digit datasets, the encoders follow the standard architectures commonly used in unsupervised domain adaptation [2].

Figure 1, *left*: architectures of E_S and E_I used for MNIST \leftrightarrow USPS and SVHN \rightarrow MNIST.

Figure 1, *right*: architectures of E_S and E_I used for SYN \rightarrow SVHN.

Figure 2, *left*: architecture of S used for all the experiments.

Figure 2, *right*: architecture of D_1 used for all the experiments.

Figure 3, *left*: architecture of D_2 used for SVHN \rightarrow MNIST and SYN \rightarrow SVHN.

Figure 3, *right*: architecture of D_2 used for MNIST \leftrightarrow USPS and NYUD (RGB \rightarrow D).

Concerning E_S and E_I used in the NYUD experiment, we relied on a pretrained VGG-16 [4], following the protocol used by Tzeng et al. [6]. We cut it at *fc7*, which was shrieked to be 128-dim and modified with tanh activations. The classifier *C* consists in an additional 19-dimensional softmax layer.

Summarizing, we found out that D_2 should be built with two or three hidden layers to stabilize the minimax game against E_I (whose structure must be the same as E_S). We designed an S that proved to be reliable in all experiments; to play a balanced minimax game, we found out that a one-hidden-layer neural network as a discriminator (D_1) is an optimal choice. The size of the hidden layer depends on the problem, and can be determined by observing the stability of the training procedure.

2. Hyperparameters

We report in this section the hyperparameters used in the different Steps of the training procedures. Note that hyperparameters were set in order to reach the convergence of the GAN [3] minimax games, no cross-validation using target labels was performed.

2.1. Digits

For each training Step, we used a batch size of 64 samples. The learning rate was set to $3 \cdot 10^{-4}$ for Step 0, $1 \cdot 10^{-4}$ for Step 1 and $3 \cdot 10^{-5}$ for Step 2, in all experiments except MNIST \leftrightarrow USPS, where was set to $3 \cdot 10^{-6}$.

2.2. NYUD

In Step 0, the network is not trained from scratches: following the protocol described in [6], we fully fine-tune a VGG-16 network [4] (pre-trained on ImageNet [1]) for 20.000 iterations, in order to have a comparable baseline model. Batch size is 32 (instead of 128) due to hardware limitations. The learning rate were 10^{-4} for Step 0, 10^{-5} for Step 1 and 10^{-7} for Step 2.

3. Ablation study

In the ablation study presented in the paper, we evaluate *DI LS-ADDA*, short for Domain Invariant Least Squares ADDA, *i.e.* our method without performing feature augmentation through *S*. Figure 4 depicts the two Steps of such algorithm. The architectures of the modules and hyperparameters are the same as in the full pipeline.

Figure 1. Architectures used for $C \circ E_S$ and $C \circ E_I$ ($C \circ E$ for simplicity) in the MNIST \leftrightarrow USPS (P1-P2) and in the SVHN \rightarrow MNIST (*left*) experiments, with the different values of Dropout [5] indicated (D), and in the SYN \rightarrow SVHN experiment (*right*). The classification module (C) is a simple fully-connected + softmax layer.

Figure 2. Architectures used for S (*left*) and for D_1 (*right*), with the size of the features generated and of the hidden layer indicated, respectively.

Figure 3. Architectures used for D_2 in SVHN \rightarrow MNIST and SYN \rightarrow SVHN (*left*), and in NYUD and MNIST \leftrightarrow USPS (*right*).

Figure 4. DI LS-ADDA. Domain invariance is enforced by feeding both target and source data to E_{DI} . The feature augmentation module S is removed from the full pipeline. E_{DI} has the same architecture as E_I and D of D_2 .

References

- J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009. 2
- [2] Y. Ganin and V. S. Lempitsky. Unsupervised domain adaptation by backpropagation. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 1180–1189, 2015. 1
- [3] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, *Advances in Neural Information Processing Systems 27*, pages 2672–2680. Curran Associates, Inc., 2014. 1
- [4] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. *CoRR*, abs/1409.1556, 2014. 1, 2
- [5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1), Jan. 2014. 2
- [6] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In *The IEEE Conference* on Computer Vision and Pattern Recognition (CVPR), July 2017. 1, 2