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Current work in scene graph parsing is largely inconsis-
tent in terms of evaluation and experiments across papers
are not completely comparable. In this supplementary ma-
terial, we attempt to classify some of the differences and put
the works together in the most comparable light.

Setup

In our paper, we compared against papers that (to the
best of our knowledge) evaluated in the same way as [7].
Variation in evaluation consists of two types:

• Custom data handling, such as creating paper-specific
dataset splits, changing the data pre-processing, or us-
ing different label sets.

• Omitting graph constraints, namely, allowing a head-
tail pair to have multiple edge labels in system output.
We hypothesize that omitting graph constraints should
always lead to higher numbers, since the model is then
allowed multiple guesses for challenging objects and
relations.

Table 1 provides a best effort comprehensive review against
all prior work that we are aware of. Other works also intro-
duce slight variations in the tasks that are evaluated:1

• Predicate Detection (PREDDET). The model is given
a list of labeled boxes, as in predicate classification,
and a list of head-tail pairs that have edges in the
ground truth (the model makes no edge predictions for
head-tail pairs not in the ground truth).

• Phrase Detection (PHRDET). The model must pro-
duce a set of objects and edges, as in scene graph
detection. An edge is counted as a match if the ob-
jects and predicate match the ground truth, with the
IOU between the union-boxes of the prediction and
the ground truth over 0.5 (in contrast to scene graph
detection where each object box must independently

1We use task names from [5], despite inconsistency in whether the un-
derlying task actually involves classification or detection.

overlap with the corresponding ground truth box).

Models considered

In Table 1, we list the following additional methods:

• MSDN [3]: This model is an extension of the message
passing idea from [7]. In addition to using an RPN to
propose boxes for objects, an additional RPN is used
to propose regions for captioning. The caption genera-
tor is trained using an additional loss on the annotated
regions from Visual Genome.

• MSDN-FREQ: To benchmark the performance on
[3]’s split (with more aggressive preprocessing than [7]
and with small objects removed), we evaluated a ver-
sion of our FREQ baseline in [3]’s codebase. We took a
checkpoint from the authors and replaced all edge pre-
dictions with predictions from the training set statistics
from [3]’s split.

• SCR [2]: This model uses an RPN to generate triplet
proposals. Messages are then passed between the head,
tail, and predicate for each triplet.

• DR-NET [1]: Similar to [7], this model uses an ob-
ject detector to propose regions, and then messages are
passed between relationship components using an ap-
proximation to CRF inference.

• VRL [4]: This model constructs a scene graph incre-
mentally. During training, a reinforcement learning
loss is used to reward the model when it predicts cor-
rect components.

• VTE [9]: This model learns subject, predicate, and
object embeddings. A margin loss is used to reward
the model for predicting correct triplets over incorrect
ones.

• LKD [8]: This model uses word vectors to regularize
a CNN that predicts relationship triplets.



Graph constraints No graph constraints
SGDET SGCLS PREDCLS SGDET SGCLS PREDCLS PHRDET PREDDET

Model R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100
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VRD [5], from [7] 0.3 0.5 11.8 14.1 27.9 35.0
ASSOC. EMBED [6] 8.1 8.2 21.8 22.6 54.2 55.5 9.7 11.3 26.5 30.0 68.0 75.2
MESSAGE PASSING [7] 3.4 4.2 21.7 24.4 44.8 53.0
MESSAGE PASSING+ 20.7 24.5 34.6 35.4 59.3 61.3 22.0 27.4 43.4 47.2 75.2 83.6 34.4 42.2 93.5 97.2
FREQ 23.5 27.6 32.4 34.0 59.9 64.1 25.3 30.9 40.5 43.7 71.3 81.2 37.2 45.0 88.3 90.1
FREQ-OVERLAP 26.2 30.1 32.3 32.9 60.6 62.2 28.6 34.4 39.0 43.4 75.7 82.9 41.6 49.9 94.6 96.9
MOTIFNET-NOCONTEXT 26.2 29.0 34.8 35.5 63.7 65.6 29.8 34.7 43.4 46.6 78.8 85.9 43.5 50.9 94.2 97.1
MOTIFNET 27.2 30.3 35.8 36.5 65.2 67.1 30.5 35.8 44.5 47.7 81.1 88.3 44.2 52.1 96.0 98.4
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MSDN [3]? 10.7 14.2 24.3 26.5 67.0 71.0
MSDN 11.7 14.0 20.9 24.0 42.3 48.2
MSDN-FREQ 13.5 15.7 25.8 27.8 56.0 61.0
SCR[2] 10.67 13.81 16.58 21.54

ot
he

rs
pl

it DR-NET[1] 20.79 23.76 23.95 27.57 88.26 91.26
VRL[4] 12.57 13.34 14.36 16.09
VTE[9] 5.52 6.04 9.46 10.45
LKD[8] 92.31 95.68

Table 1. Results with and without scene graph constraints. Horizontal lines indicate different dataset preprocessing settings (the “other
split” results, to the best of our knowledge, are reported on different splits). ?: [3] authors acknowledge that their paper results aren’t
reproducible for SGCLS and PREDCLS; their current best reproducible numbers are one line below. MSDN-FREQ: Results from using
node prediction from [3] and edge prediction from FREQ.

Summary

The amount of variation in Table 1 requires extremely
cautious interpretation. As expected, removing graph con-
straints significantly increases reported performance and
both predicate detection and phrase detection are signif-
icantly less challenging than predicate classification and
scene graph detection, respectively. On [3]’s split, the
MSDN-FREQ baseline outperforms MSDN on all evalua-
tion settings, suggesting baseline is robust across alternative
data settings. In total, the results suggest that our model and
baselines are at least competitive with other approaches on
different configurations of the task.
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