LIME: Live Intrinsic Material Estimation

Abhimitra Meka, Maxim Maximov, Michael Zollhöfer, Avishek Chatterjee, Hans-Peter Seidel, Christian Richardt, Christian Theobalt; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6315-6324

Abstract


We present the first end-to-end approach for real-time material estimation for general object shapes with uniform material that only requires a single color image as input. In addition to Lambertian surface properties, our approach fully automatically computes the specular albedo, material shininess, and a foreground segmentation. We tackle this challenging and ill-posed inverse rendering problem using recent advances in image-to-image translation techniques based on deep convolutional encoder–decoder architectures. The underlying core representations of our approach are specular shading, diffuse shading and mirror images, which allow to learn the effective and accurate separation of diffuse and specular albedo. In addition, we propose a novel highly efficient perceptual rendering loss that mimics real world image formation and obtains intermediate results even during run time. The estimation of material parameters at real-time frame rates enables exciting mixed reality applications, such as seamless illumination-consistent integration of virtual objects into realworld scenes, and virtual material cloning.We demonstrate our approach in a live setup, compare it to the state of the art, and demonstrate its effectiveness through quantitative and qualitative evaluation.

Related Material


[pdf] [supp] [arXiv] [video]
[bibtex]
@InProceedings{Meka_2018_CVPR,
author = {Meka, Abhimitra and Maximov, Maxim and Zollhöfer, Michael and Chatterjee, Avishek and Seidel, Hans-Peter and Richardt, Christian and Theobalt, Christian},
title = {LIME: Live Intrinsic Material Estimation},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}