Improving Object Localization With Fitness NMS and Bounded IoU Loss
Lachlan Tychsen-Smith, Lars Petersson; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6877-6885
Abstract
We demonstrate that many detection methods are designed to identify only a sufficently accurate bounding box, rather than the best available one. To address this issue we propose a simple and fast modification to the existing methods called Fitness NMS. This method is tested with the DeNet model and obtains a significantly improved MAP at greater localization accuracies without a loss in evaluation rate, and can be used in conjunction with Soft NMS for additional improvements. Next we derive a novel bounding box regression loss based on a set of IoU upper bounds that better matches the goal of IoU maximization while still providing good convergence properties. Following these novelties we investigate RoI clustering schemes for improving evaluation rates for the DeNet wide model variants and provide an analysis of localization performance at various input image dimensions. We obtain a MAP of 33.6%@79Hz and 41.8%@5Hz for MSCOCO and a Titan X (Maxwell).
Related Material
[pdf]
[arXiv]
[
bibtex]
@InProceedings{Tychsen-Smith_2018_CVPR,
author = {Tychsen-Smith, Lachlan and Petersson, Lars},
title = {Improving Object Localization With Fitness NMS and Bounded IoU Loss},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}