Multi-Scale Location-Aware Kernel Representation for Object Detection

Hao Wang, Qilong Wang, Mingqi Gao, Peihua Li, Wangmeng Zuo; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1248-1257

Abstract


Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation. Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0 (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: https://github.com/Hwang64/MLKP.

Related Material


[pdf] [arXiv]
[bibtex]
@InProceedings{Wang_2018_CVPR,
author = {Wang, Hao and Wang, Qilong and Gao, Mingqi and Li, Peihua and Zuo, Wangmeng},
title = {Multi-Scale Location-Aware Kernel Representation for Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}