Learning to Detect Features in Texture Images
Linguang Zhang, Szymon Rusinkiewicz; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 6325-6333
Abstract
Local feature detection is a fundamental task in computer vision, and hand-crafted feature detectors such as SIFT have shown success in applications including image-based localization and registration. Recent work has used features detected in texture images for precise global localization, but is limited by the performance of existing feature detectors on textures, as opposed to natural images. We propose an effective and scalable method for learning feature detectors for textures, which combines an existing "ranking" loss with an efficient fully-convolutional architecture as well as a new training-loss term that maximizes the "peakedness" of the response map. We demonstrate that our detector is more repeatable than existing methods, leading to improvements in a real-world texture-based localization application.
Related Material
[pdf]
[supp]
[video]
[
bibtex]
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Linguang and Rusinkiewicz, Szymon},
title = {Learning to Detect Features in Texture Images},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}