
Efficient Interactive Annotation of Segmentation Datasets with Polygon-RNN++

David Acuna1,3,∗ Huan Ling1,2∗ Amlan Kar1,2,∗ Sanja Fidler1,2

1University of Toronto 2Vector Institute 3NVIDIA†

{davidj, linghuan, amlan, fidler}@cs.toronto.edu

Abstract

Manually labeling datasets with object masks is extremely

time consuming. In this work, we follow the idea of Polygon-

RNN [4] to produce polygonal annotations of objects in-

teractively using humans-in-the-loop. We introduce sev-

eral important improvements to the model: 1) we design

a new CNN encoder architecture, 2) show how to effectively

train the model with Reinforcement Learning, and 3) signifi-

cantly increase the output resolution using a Graph Neural

Network, allowing the model to accurately annotate high-

resolution objects in images. Extensive evaluation on the

Cityscapes dataset [8] shows that our model, which we refer

to as Polygon-RNN++, significantly outperforms the origi-

nal model in both automatic (10% absolute and 16% relative

improvement in mean IoU) and interactive modes (requiring

50% fewer clicks by annotators). We further analyze the

cross-domain scenario in which our model is trained on one

dataset, and used out of the box on datasets from varying

domains. The results show that Polygon-RNN++ exhibits

powerful generalization capabilities, achieving significant

improvements over existing pixel-wise methods. Using sim-

ple online fine-tuning we further achieve a high reduction

in annotation time for new datasets, moving a step closer

towards an interactive annotation tool to be used in practice.

1. Introduction

Detailed reasoning about structures in images is a neces-

sity for numerous computer vision applications. For exam-

ple, it is crucial in the domain of autonomous driving to

localize and outline all cars, pedestrians, and miscellaneous

static and dynamic objects [1, 18, 12]. For mapping, there

is a need to obtain detailed footprints of buildings and roads

from aerial/satellite imagery [34], while medical/healthcare

domains require automatic methods to precisely outline cells,

tissues and other relevant structures [15, 11].

Neural networks have proven to be an effective way of

inferring semantic [6, 19] and object instance segmentation

∗authors contributed equally
†work done when D.A. was at UofT

Annotate Your Datasets Much Faster

PolygonRNN++: Interactive Annotation Tool

autonomous driving imagery

general scenes aerial imagery medical imagery

Figure 1: We introduce Polygon-RNN++, an interactive object an-

notation tool. We make several advances over [4], allowing us

to annotate objects faster and more accurately. Furthermore, we

exploit a simple online fine-tuning method to adapt our model from

one dataset to efficiently annotate novel, out-of-domain datasets.

information [12, 18] in challenging imagery. It is well known

that the amount and variety of data that the networks see

during training drastically affects their performance at run

time. Collecting ground truth instance masks, however, is an

extremely time consuming task, typically requiring human

annotators to spend 20-30 seconds per object in an image.

To this end, in [4], the authors introduced Polygon-RNN,

a conceptual model for semi-automatic and interactive label-

ing to help speed up object annotation. Instead of producing

pixel-wise segmentation of an object as in existing interac-

tive tools such as Grabcut [30], [4] predicts the vertices of

a polygon that outlines the object. The benefits of using a

polygon representation are three-fold, 1) it is sparse (only a

few vertices represent regions with a large number of pix-

els), 2) it is easy for an annotator to interact with, and 3)

it allows for efficient interaction, typically requiring only a

few corrections from the annotator [4]. Using their model,

the authors have shown high annotation speed-ups on two

autonomous driving datasets [8, 10].

In this work, we introduce several improvements to the

Polygon-RNN model. In particular, we 1) make a few

changes to the neural network architecture, 2) propose a bet-

ter learning algorithm to train the model using reinforcement

learning, and 3) show how to significantly increase the out-

1859

put resolution of the polygon (one of the main limitations of

the original model) using a Graph Neural Network [31, 17].

We analyze the robustness of our approach to noise, and its

generalization capabilities to out-of-domain imagery.

In the fully automatic mode (no annotator in the loop),

our model achieves significant improvements over the orig-

inal approach, outperforming it by 10% mean IoU on the

Cityscapes dataset [8]. In interactive mode, our approach re-

quires 50% fewer clicks as compared to [4]. To demonstrate

generalization, we use a model trained on the Cityscapes

dataset to annotate a subset of a scene parsing dataset [41],

aerial imagery [33], and two medical datasets [15, 11]. The

model significantly outperforms strong pixel-wise labeling

baselines, showcasing that it inherently learns to follow ob-

ject boundaries, thus generalizing better. We further show

that a simple online fine-tuning approach achieves high an-

notation speed-ups on out-of-domain dataset annotation.

2. Related Work

Interactive annotation. Since object instance segmenta-

tion is time consuming to annotate manually, several works

have aimed at speeding up this process using interactive

techniques. In seminal work, [2] used scribbles to model the

appearance of foreground/background, and performed seg-

mentation via graph-cuts [3]. This idea was extended by [20]

to use multiple scribbles on both the object and background,

and was demonstrated in annotating objects in videos. Grab-

Cut [30] exploited 2D bounding boxes provided by the an-

notator, and performed pixel-wise foreground/background

labeling using EM. [25] combined GrabCut with CNNs to

annotate structures in medical imagery. Most of these works

operate on the pixel level, and typically have difficulties in

cases where foreground and background have similar color.

In [4], the authors used polygons instead. The main power

of using such a representation is that it is sparse; only a few

vertices of a polygon represent large image regions. This al-

lows the user to easily introduce corrections, by simply mov-

ing the wrong vertices. An RNN also effectively captures

typical shapes of objects as it forms a non-linear sequential

representation of shape. This is particularly important in

ambiguous regions, ie shadows and saturation, where bound-

aries cannot be observed. We follow this line of work, and

introduce several important modifications to the architec-

ture and training. Furthermore, the original model was only

able to make prediction at a low resolution (28× 28), thus

producing blocky polygons for large objects. Our model

significantly increases the output resolution (112× 112).

Object instance segmentation. Most approaches to ob-

ject instance segmentation [16, 29, 39, 37, 21, 22, 12, 1, 18]

operate on the pixel-level. Many rely on object detection,

and use a convnet over a box proposal to perform the label-

ing [21, 22, 12]. In [38, 33], the authors produce a polygon

around an object. These approaches first detect boundary

fragments, followed by finding an optimal cycle linking the

boundaries into object regions. [9] produce superpixels in

the form of small polygons which are further combined into

an object. Here, as in [4] we use neural networks to produce

polygons, and in particular tackle the interactive labeling

scenario which has not been explored in these works.

3. Polygon-RNN++

In this section, we introduce Polygon-RNN++. Follow-

ing [4], our model expects an annotator to provide a bbox

around the object of interest. We extract an image crop

enclosed by the 15% enlarged box. We use a CNN+RNN

architecture as in [4], with a CNN serving as an image fea-

ture extractor, and the RNN decoding one polygon vertex at

a time. Output vertices are represented as locations in a grid.

The full model is depicted in Fig. 2. Our redesigned

encoder produces image features that are used to predict

the first vertex. The first vertex and the image features are

then fed to the recurrent decoder. Our RNN exploits visual

attention at each time step to produce polygon vertices. A

learned evaluator network selects the best polygon from a set

of candidates proposed by the decoder. Finally, a graph neu-

ral network re-adjusts polygons, augmented with additional

vertices, at a higher resolution.

This model naturally incorporates a human in the loop,

allowing the annotator to correct an erroneously predicted

vertex. This vertex is then fed back to the model, helping the

model to correct its prediction in the next time steps.

3.1. Residual Encoder with Skip Connections

Most networks perform repeated down-sampling oper-

ations at consecutive layers of a CNN, which impacts the

effective output resolution in tasks such as image segmen-

tation [6, 23]. In order to alleviate this issue, we follow [7]

and modify the ResNet-50 architecture [13] by reducing the

stride of the network and introducing dilation factors. This

allows us to increase the resolution of the output feature map

without reducing the receptive field of individual neurons.

We also remove the original average pooling and FC layers.

We further add a skip-layer architecture [19, 40] which

aims to capture both, low-level details such as edges and cor-

ners, as well as high-level semantic information. In [4], the

authors perform down-sampling in the skip-layer architec-

ture, built on top of VGG, before concatenating the features

from different layers. Instead, we concatenate all the outputs

of the skip layers at the highest possible resolution, and use

a combination of conv layers and max-pooling operations

to obtain the final feature map. We employ conv filters with

a kernel size of 3× 3, batch normalization [14] and ReLU

non-linearities. In cases where the skip-connections have

different spatial dimensions, we use bilinear upsampling be-

fore concatenation. The architecture is shown in Fig. 4. We

refer to the final feature map as the skip features.

860

CNN
Encoder

First
Vertex

Recurrent
Decoder

GGNN

Evaluator
Network

polygon upscaling

polygon prediction

polygon evaluation

vertex

vertices

Atte-

ntion

Figure 2: Polygon-RNN++ model (figures best viewed in color)

28x28x16 28x28x1

skip

features

last RNN

state

Evaluator Network

FC
1x1

IOU

conv

Figure 3: Evaluator Network predicting the quality

of a polygon output by the RNN decoder

x0.5

Resnet-50

Skip Features

112x112

x64

28x28

x256
28x28

x512

28x28

x2048

conv 1 res 1 res 2 res 3 res 4

112x112

x256

56x56

x128

28x28

x128

28x28

x128

x0.5

{concat} 3× 3 conv

Figure 4: Residual Encoder architecture. Blue tensor is fed to GNN, while

the orange tensor is input to the RNN decoder.

3.2. Recurrent Decoder

As in [4], we use a Recurrent Neural Network to model

the sequence of 2D vertices of the polygon outlining an ob-

ject. In line with previous work, we also found that the use of

Convolutional LSTM [36] is essential: 1) to preserve spatial

information and 2) to reduce the number of parameters to be

learned. In our RNN, we further add an attention mechanism,

as well as predict the first vertex within the same network

(unlike [4] which has two separate networks).

We use a two-layer ConvLTSM with a 3× 3 kernel with

64 and 16 channels, respectively. We apply batch norm [14]

at each time step, without sharing mean/variance estimates

across time steps. We represent our output at time step t as

a one-hot encoding of (D ×D) + 1 elements, where D is

the resolution at which we predict. In our experiments, D is

set to 28. The first D×D dimensions represent the possible

vertex positions and the last dimension corresponds to the

end-of-seq token that signals that the polygon is closed.

Attention Weighted Features: In our RNN, we exploit a

mechanism akin to attention. In particular, at time step t, we

compute the weighted feature map as,

αt = softmax(fatt(x, f1(h1,t−1), f2(h2,t−1)))

Ft = x ◦ αt

(1)

where ◦ is the Hadamard product, x is the skip feature tensor,

and h1,t, h2,t are the hidden state tensors from the two-

layer ConvLSTM. Here, f1 and f2 map h1,t and h2,t to

R
D×D×128 using one fully-connected layer. fatt takes the

sum of its inputs and maps it to D × D through a fully

connected layer, giving one “attention” weight per location.

Intuitively, we use the previous RNN hidden state to gate

certain locations in the image feature map, allowing the RNN

to focus only on the relevant information in the next time

step. The gated feature map Ft is then concatenated with

one-hot encodings of the two previous vertices yt−1, yt−2

and the first vertex y0, and passed to the RNN at time step t.

First Vertex: Given a previous vertex and an implicit di-

rection, the next vertex of a polygon is always uniquely

defined, except for the first vertex. To tackle this problem,

the authors in [4] treated the first vertex as a special case and

used an additional architecture (trained separately) to predict

it. In our model, we add another branch from the skip-layer

architecture, constituting of two layers each of dimension

D ×D. Following [4], the first layer predicts edges, while

the second predicts the vertices of the polygon. At test time,

the first vertex is sampled from the final layer of this branch.

3.3. Training using Reinforcement Learning

In [4], the authors trained the model using the cross-

entropy loss at each time step. However, such training has

two major limitations: 1) MLE over-penalizes the model (for

example when the predicted vertex is on an edge of the GT

polygon but is not one of the GT vertices), and 2) it optimizes

a metric that is very different from the final evaluation metric

(i.e. IoU). Further, the model in [4] was trained following a

typical training regime where the GT vertex is fed to the next

time step instead of the model’s prediction. This training

regime, called teacher forcing creates a mismatch between

training and testing known as the exposure bias problem [26].

In order to mitigate these problems, we only use MLE

training as an initialization stage. We then reformulate the

polygon prediction task as a reinforcement learning problem

and fine-tune the network using RL. During this phase, we

let the network discover policies that optimize the desirable,

yet non-differentiable evaluation metric (IoU) while also

exposing it to its own predictions during training.

3.3.1 Problem formulation

We view our recurrent decoder as a sequential decision mak-

ing agent. The parameters θ of our encoder-decoder architec-

ture define its policy pθ for selecting the next vertex vt. At

the end of the sequence, we obtain a reward r. We compute

our reward as the IoU between the mask enclosed by the gen-

erated polygon and the ground-truth mask m. To maximize

the expected reward, our loss function becomes

L(θ) = −Evs∼pθ
[r(vs,m)] (2)

where vs = (vs
1
, ..., vsT), and vst is the vertex sampled from

the model at time t. Here, r = IoU(mask(vs),m).

861

3.3.2 Self-Critical Training with Policy Gradients

Using the REINFORCE trick [35] to compute the gradients

of the expectation, we have

∇L(θ) = −Evs∼pθ
[r(vs,m)∇ log pθ(v

s)] (3)

In practice, the expected gradient is computed using simple

Monte-Carlo sampling with a single sample. This procedure

is known to exhibit high variance and is highly unstable

without proper context-dependent normalization. A natural

way to deal with this is to use a learned baseline which is

subtracted from the reward. In this work, we follow the self-

critical method [28] and use the test-time inference reward

of our model as the baseline. Accordingly, we reformulate

the gradient of our loss function to be

∇L(θ) = −[(r(vs,m)− r(v̂s,m))∇ log pθ(v
s)] (4)

where r(v̂s,m) is the reward obtained using greedy decod-

ing. To control the level of randomness in the vertices ex-

plored by the model, we introduce a temperature parameter

τ in the softmax of the policy. This ensures that the sampled

vertices lead to well behaved polygons. We set τ = 0.6.

3.4. Evaluator Network

Smart choice of the first vertex is crucial as it biases the

initial predictions of the RNN, when the model does not

have a strong history to reason about the object to annotate.

This is particularly important in cases of occluding objects.

It is desirable for the first vertex to be far from the occlusion

boundaries so that the model follows the object of interest. In

RNNs, beam search is typically used to prune off improbable

sequences. However, since classical beam search uses log

probabilities to evaluate beams, it does not directly apply

to our model which aims to optimize IoU. A point on an

occlusion boundary generally exhibits a strong edge and

thus would have a high log probability during prediction,

reducing the chances of it being pruned by beam search.

In order to solve this problem, we propose to use an

evaluator network at inference time, aiming to effectively

choose among multiple candidate polygons. Our evaluator

network takes as input the skip features, the last state tensor

of the ConvLSTM, and the predicted polygon, and tries

to estimate its quality by predicting its IoU with GT. The

network has two 3×3 convolutional layers followed by a FC

layer, forming another branch in the model. Fig. 3 depicts its

architecture. While the full model can be trained end-to-end

during the RL step, we choose to train the evaluator network

separately after the RL fine-tuning has converged.

During training, we minimize the mean squared error

L(φ) = [p(φ, vs)− IoU(mvs ,m)]2 (5)

where p is the network’s predicted IoU, mvs is the mask for

the sampled vertices and m is the ground-truth mask. To

ensure diversity in the vertices seen, we sample polygons

with τ = 0.3. We emphasize that we do not use this network

as a baseline estimator during the RL training step since we

found that the self-critical method produced better results.

Inference: At test time, we take K top scoring first vertex

predictions. For each of these, we generate polygons via

classical beam-search (using log prob with a beam-width B).

This yields K different polygons, one for each first vertex

candidate. We use the evaluator network to choose the best

polygon. In our experiments, we use K = 5. While one

could use the evaluator network instead of beam-search at

each time step, this would lead to impractically long infer-

ence times. Our faster full model (using B = K = 1) runs

at 295ms per object instance on a Titan XP.

Annotator in the Loop: We follow the same protocol as

in [4], where the annotator corrects the vertices in sequential

order. Each correction is then fed back to the model, which

re-predicts the rest of the polygon.

3.5. Upscaling with a Graph Neural Network

The model described above produces polygons at a reso-

lution of D ×D, where we set D to be 28 to satisfy mem-

ory bounds and to keep the cardinality of the output space

amenable. In this section, we exploit a Gated Graph Neural

Network (GGNN) [17], in order to generate polygons at a

much higher resolution. GNN has been proven efficient for

semantic segmentation [24], where it was used at pixel-level.

Note that when training the RNN decoder, the GT poly-

gons are simplified at their target resolution (co-linear ver-

tices are removed) to alleviate the ambiguity of the prediction

task. Thus, at a higher resolution, the object may have addi-

tional vertices, thus changing the topology of the polygon.

Our upscaling model takes as input the sequence of ver-

tices generated by the RNN decoder. We treat these vertices

as nodes in a graph. To model finer details at a higher resolu-

tion, we add a node in between two consecutive nodes, with

its location being in the middle of their corresponding edge.

We also connect the last and the first vertex, effectively con-

verting the sequence into a cycle. We connect neighboring

nodes using 3 different types of edges, as shown in Fig. 5.

GGNN defines a propagation model that extends RNNs

to arbitrary graphs, effectively propagating information be-

tween nodes, before producing an output at each node. Here,

we aim to predict the relative offset of each node (vertex) at

a higher resolution. The model is visualized in Fig. 5.

Gated Graph Neural Network: For completeness, we

briefly summarize the GGNN model [17]. GGNN uses a

graph {V,E}, where V and E are the sets of nodes and edges,

respectively. It consists of a propagation model performing

message passing in the graph, and an output model for pre-

diction tasks. We represent the initial state of a node v as xv

and the hidden state of node v at time step t as ht
v . The basic

862

prediction from RNN GGNN prediction from GGNN

Figure 5: GGNN model: We take predicted polygon from RNN (orange

vertices), and add midpoints (in blue) between every pair of consecutive

vertices (orange). Our GGNN has three types of edges (red, blue, green),

each having its own weights for message propagation. Black dashed arrows

pointing out of the nodes (middle diagram) indicate that the GGNN aims to

predict the relative location for each of the nodes (vertices), after completing

propagation. Right is the high resolution polygon output by the GGNN.

recurrence of the propagation model is

h0

v = [x⊤
v , 0]

⊤

atv = A⊤
v: [h

t−1

1

⊤
, ..., ht−1

|V |

⊤
]⊤ + b

ht
v = fGRU (h

t−1

v , atv)

(6)

The matrix A ∈ R
|V |×2N |V | determines how the nodes in

the graph communicate with each other, where N represents

the number of different edge types. Messages are propagated

for T steps. The output for node v is then defined as

hv = tan(f1(h
T
v))

outv = f2(hv)
(7)

Here, f1 and f2 are MLP, and outv is v’s desired output.

PolygonRNN++ with GGNN: To get observations for our

GGNN model, we add another branch on top of our skip-

layer architecture, specifically, from the 112 × 112 × 256
feature map (marked in blue in Fig. 4). We exploit a conv

layer with 256 filters of size 15×15, giving us a feature map

of size 112× 112× 256. For each node v in the graph, we

extract a S × S patch around the scaled (vx, vy) location,

giving us the observation vector xv. After propagation, we

predict the output of a node v as a location in a D′ ×D′ spa-

tial grid. We make this grid relative to the location (vx, vy),
rendering the prediction task to be a relative displacement

with respect to its initial position. This prediction is treated

as a classification task and the model is trained with the cross

entropy loss. In particular, in order to train our model, we

first take predictions from the RNN decoder, and correct a

wrong prediction if it deviates from the ground-truth vertex

by more than a threshold. The targets for training our GGNN

are then the relative displacements of each of these vertices

with respect to their corresponding ground-truth vertices.

Implementation details: We set S to 1 and D′ to 112.

While our model supports much higher output resolutions,

we found that larger D′ did not improve results. The hidden

state of the GRU in the GGNN has 256 dimensions. We

use T = 5 propagation steps. In the output model, f1 is

a 256 × 256 FC layer and f2 is a 256 × 15 × 15 MLP. In

training, we take the predictions from the RNN, and replace

vertices with GT vertices if they deviate by more than 3 cells.

3.6. Annot. New Domains via Online FineTuning

We now also tackle the scenario in which our model

is trained on one dataset, and is used to annotate a novel

dataset. As the new data arrives, the annotator uses our

model to annotate objects and corrects wrong predictions

when necessary. We propose a simple approach to fine-tune

our model in such a scenario, in an online fashion.

Let us denote C as the number of chunks the new data

is divided into, CS as the chunk size, NEV as the number

of training steps for the evaluator network and NMLE , NRL

as the number of training steps for each chunk with MLE

and RL, respectively. Our online fine-tuning is described

in Algorithm 1 where PredictAndCorrect refers to the

(simulated) annotator in the loop. Because we train on cor-

rected data, we smooth our targets for MLE training with a

manhattan distance transform truncated at distance 2.

Algorithm 1: Online Fine Tuning on New Datasets

bestPoly = cityscapesPoly;

while currChunk in (1..C) do

rawData = readChunk(currChunk);

data = PredictAndCorrect(rawData, bestPoly);

data += SampleFromSeenData(CS);

newPoly = TrainMLE (data, NMLE , bestPoly);

newPoly = TrainRL(data, NRL, newPoly);

newPoly = TrainEV (data, NEV , newPoly);

bestPoly = newPoly;

end

4. Experimental Results

In this section, we provide an extensive evaluation of our

model. We report both automatic and interactive instance an-

notation results on the challenging Cityscapes dataset [8] and

compare with strong pixel-wise methods. We then character-

ize the generalization capability of our model with evaluation

on the KITTI dataset [10] and four out-of-domain datasets

spanning general scenes [41], aerial [33], and medical im-

agery [15, 11]. Finally, we evaluate our online fine-tuning

scheme, demonstrating significant decrease in annotation

time for novel datasets. Note that as in [4], we assume that

user-provided ground-truth boxes around objects are given.

We further analyze robustness of our model to noise with

respect to these boxes, mimicking noisy annotators.

4.1. InDomain Annotation

We first evaluate our approach in training and evaluating

on the same domain. This mimics the scenario where one

takes an existing dataset, and uses it to annotate novel images

from the same domain. In particular, we use the Cityscapes

dataset [8], which is currently one of the most comprehensive

benchmarks for instance segmentation. It contains 2975

training, 500 validation and 1525 test images with 8 semantic

classes. To ensure a fair comparison, we follow the same

alternative split proposed by [4]. As in [4], we preprocess

863

