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Abstract

A number of studies have found that today’s Visual Ques-

tion Answering (VQA) models are heavily driven by super-

ficial correlations in the training data and lack sufficient

image grounding. To encourage development of models

geared towards the latter, we propose a new setting for VQA

where for every question type, train and test sets have differ-

ent prior distributions of answers. Specifically, we present

new splits of the VQA v1 and VQA v2 datasets, which we call

Visual Question Answering under Changing Priors (VQA-

CP v1 and VQA-CP v2 respectively). First, we evaluate

several existing VQA models under this new setting and

show that their performance degrades significantly com-

pared to the original VQA setting. Second, we propose a

novel Grounded Visual Question Answering model (GVQA)

that contains inductive biases and restrictions in the ar-

chitecture specifically designed to prevent the model from

‘cheating’ by primarily relying on priors in the training data.

Specifically, GVQA explicitly disentangles the recognition of

visual concepts present in the image from the identification

of plausible answer space for a given question, enabling

the model to more robustly generalize across different dis-

tributions of answers. GVQA is built off an existing VQA

model – Stacked Attention Networks (SAN). Our experiments

demonstrate that GVQA significantly outperforms SAN on

both VQA-CP v1 and VQA-CP v2 datasets. Interestingly, it

also outperforms more powerful VQA models such as Mul-

timodal Compact Bilinear Pooling (MCB) in several cases.

GVQA offers strengths complementary to SAN when trained

and evaluated on the original VQA v1 and VQA v2 datasets.

Finally, GVQA is more transparent and interpretable than

existing VQA models.

1. Introduction

Automatically answering questions about visual content

is considered to be one of the highest goals of artificial

intelligence. Visual Question Answering (VQA) poses a

rich set of challenges spanning various domains such as

computer vision, natural language processing, knowledge

representation, and reasoning. In the last few years, VQA

∗Work partially done while interning at Allen Institute for AI.
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Figure 1: Existing VQA models, such as SAN [38], tend to largely

rely on strong language priors in train sets, such as, the prior answer

(‘white’, ‘no’) given the question type (‘what color is the’, ‘is the

person’). Hence, they suffer significant performance degradation

on test image-question pairs whose answers (‘black’, ‘yes’) are not

amongst the majority answers in train. We propose a novel model

(GVQA), built off of SAN that explicitly grounds visual concepts

in images, and consequently significantly outperforms SAN in a

setting with mismatched priors between train and test.

has received a lot of attention – a number of VQA datasets

have been curated [5, 21, 41, 12, 25, 11, 29, 13, 39] and a

variety of deep-learning models have been developed [5, 9,

38, 37, 16, 3, 34, 19, 24, 4, 31, 20, 10, 26, 14, 35, 36, 40, 30].

However, a number of studies have found that despite

recent progress, today’s VQA models are heavily driven by

superficial correlations in the training data and lack sufficient

visual grounding [1, 39, 13, 17]. It seems that when faced

with a difficult learning problem, models typically resort to

latching onto the language priors in the training data to the

point of ignoring the image – e.g., overwhelmingly replying

to ‘how many X?’ questions with ‘2’ (irrespective of X),

‘what color is . . . ?’ with ‘white’, ‘is the . . . ?’ with ‘yes’.

One reason for this emergent dissatisfactory behavior is

the fundamentally problematic nature of IID train-test splits

in the presence of strong priors. As a result, models that in-

trinsically memorize biases in the training data demonstrate

acceptable performance on the test set. This is problematic

for benchmarking progress in VQA because it becomes un-

clear what the source of the improvements is – if models

have learned to ground concepts in images or they are driven

by memorizing priors in training data.

To help disentangle these factors, we present new splits

of the VQA v1 [5] and VQA v2 [13] datasets, called Visual
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Question Answering under Changing Priors (VQA-CP

v1 and VQA-CP v2 respectively). These new splits are cre-

ated by re-organizing the train and val splits of the respective

VQA datasets in such a way that the distribution of answers

per question type (‘how many’, ‘what color is’, etc.) is by

design different in the test split compared to the train split

(Section 3). One important thing to note: we do not change

the distribution of the underlying perceptual signals – the im-

ages – between train and test. Generalization across different

domains of images (e.g. COCO images vs. web cam images)

is an active research area and not the focus of this work. We

change the distribution of answers for each question type

between train and test. Our hypothesis is that it is reasonable

to expect models that are answering questions for the ‘right

reasons’ (image grounding) to recognize ‘black’ color at

test time even though ‘white’ is the most popular answer for

‘What color is the . . . ?’ questions in the train set Fig. 1.

To demonstrate the difficulty of our VQA-CP splits,

we report the performance of several existing VQA mod-

els [23, 3, 38, 10] on these splits. Our key finding is that the

performance of all tested existing models drops significantly

when trained and evaluated on the new splits compared to

the original splits (Section 4). This finding provides further

confirmation and a novel insight to the growing evidence in

literature on the behavior of VQA models [1, 39, 13, 17].

We also propose a novel Grounded Visual Question

Answering (GVQA) model that contains inductive biases

and restrictions in the architecture specifically designed to

prevent it from ‘cheating’ by primarily relying on priors in

the training data (Section 5). GVQA is motivated by the

intuition that questions in VQA provide two key pieces of

information:

(1) What should be recognized? Or what visual concepts in

the image need to be reasoned about to answer the question

(e.g., ‘What color is the plate?’ requires looking at the plate

in the image),

(2) What should be said? Or what is the space of plausi-

ble answers (e.g., ‘What color . . . ?’ questions need to be

answered with names of colors).

Our hypothesis is that models that do not explicitly dif-

ferentiate between these two roles – which is the case for

most existing models in literature – tend to confuse these two

signals. They end up learning from question-answer pairs

that a plausible color of a plate is white, and at test time, rely

on this correlation more so than the specific plate in the im-

age the question is about. GVQA explicitly disentangles the

visual concept recognition from the answer space prediction.

GVQA is built off of an existing VQA model – Stacked

Attention Networks (SAN) [38]. Our experiments demon-

strate that GVQA significantly outperforms SAN on both

VQA-CP v1 and VQA-CP v2 datasets (Section 6.1). Inter-

estingly, it also outperforms more powerful VQA models

such as Multimodal Compact Bilinear Pooling (MCB) [10]

in several cases (Section 6.1). We also show that GVQA

offers strengths complementary to SAN when trained and

evaluated on the original VQA v1 and VQA v2 datasets (Sec-

tion 6.3). Finally, GVQA is more transparent than existing

VQA models, in that it produces interpretable intermediate

outputs unlike most existing VQA models (Section 6.4).

2. Related Work

Countering Priors in VQA: In order to counter the lan-

guage priors in the VQA v1 dataset, [13] balance every ques-

tion by collecting complementary images for every question.

Thus, for every question in the proposed VQA v2 dataset,

there are two similar images with different answers to the

question. By construction, language priors are significantly

weaker in the VQA v2 dataset. However, the train and test

distributions are still similar. So, leveraging priors from the

train set will still benefit the model at test time. [39] balance

the yes/no questions on abstract scenes from the VQA v1

dataset in a similar manner. More recently, [18] propose two

new evaluation metrics that compensate for the skewed dis-

tribution of question types and for the skewed distribution of

answers within each question type in the test set. As a rem-

edy for machines using “shortcuts” to solve multiple-choice

VQA, [7] describe several principles for automatic construc-

tion of good decoys (the incorrect candidate answers). [8]

study cross-dataset adaptation for VQA. They propose an al-

gorithm for adapting a VQA model trained on one dataset to

apply to another dataset with different statistical distribution.

All these works indicate that there is an increasing interest

in the community to focus on models that are less driven by

training priors and are more visually grounded.

Compositionality. Related to the ability to generalize

across different answer distributions is the ability to general-

ize to novel compositions of known concepts learned during

training. Compositionality has been studied in various forms

in the vision community. Zero-shot object recognition us-

ing attributes is based on the idea of composing attributes

to detect novel object categories [22, 15]. [6] have studied

compositionality in the domain of image captioning by fo-

cusing on structured representations (subject-relation-object

triplets). [17] study compositionality in the domain of VQA

with synthetic images and questions, with limited vocabu-

lary of objects and attributes. More recently, [2] propose a

compositional split of the VQA v1 dataset, called C-VQA,

that consists of real images and questions (asked by humans)

to test the extent to which existing VQA models can answer

compositionally novel questions. However, even in the C-

VQA splits, the distribution of answers for each question

type does not change much from train to test. Hence, models

relying on priors, can still generalize to the test set.

[3, 4] have developed Neural Module Networks for VQA

that consist of different modules each specialized for a par-
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ticular task. These modules can be composed together based

on the question structure to create a model architecture for

the given question. We report the performance of this model

[3] on our VQA-CP datasets and find that its performance

degrades significantly from the original VQA setting to the

proposed CP setting (Section 4).

Zero-shot VQA has also been explored in [33]. They

study a setting for VQA where the test questions (the ques-

tion string itself or the multiple choices) contain at least

one unseen word. [28] propose answering questions about

unknown objects (e.g., ‘Is the dog black and white?’ where

‘dog’ is never seen in training questions or answers). These

are orthogonal efforts to our work in that our focus is not in

studying if unseen words/concepts can be recognized during

testing. We are instead interested in studying the extent to

which a model is visually grounded by evaluating its ability

to generalize to a different answer distribution for each ques-

tion type. In our splits, we ensure that concepts seen during

test time are present during training to the extent possible.

3. VQA-CP : Dataset Creation and Analysis

The VQA-CP v1 and VQA-CP v2 splits are created such

that the distribution of answers per question type (‘how

many’, ‘what color is’, etc.) is different in the test data

compared to the training data. These splits are created by

re-organizing the training and validation splits of the VQA

v1 [5] and VQA v2 [13] datasets respectively 1, using the

following procedure:

Question Grouping: Questions having the same ques-

tion type (first few words of the question – ‘What color is

the’, ‘What room is’, etc.) and the same ground truth an-

swer are grouped together. For instance, {‘What color is the

dog?’, ‘white’} and {‘What color is the plate?’, ‘white’} are

grouped together whereas {‘What color is the dog?’, ‘black’}

is put in a different group. This grouping is done after merg-

ing the QA pairs from the VQA train and val splits. We use

the question types provided in the VQA datasets.

Greedily Re-splitting: A greedy approach is used to

redistribute data points (image, question, answer) to the

VQA-CP train and test splits so as to maximize the coverage

of the VQA-CP test concepts in the VQA-CP train split

while making sure that questions with the same question type

and the same ground truth answer are not repeated between

test and train splits. In this procedure, we loop through all

the groups created above, and in every iteration, we add the

current group to the VQA-CP test split unless the group

has already been assigned to the VQA-CP train split. We

always maintain a set of concepts2 belonging to the groups

1We can not use the test splits from VQA datasets because creation

of VQA-CP splits requires access to answer annotations, which are not

publicly available on the test sets.
2For a given group, concepts are the set of all unique words present in

the question type and the ground truth answer belonging to that group.

VQA-CP Train Split VQA-CP Test Split

Figure 2: Distribution of answers per question type vary signifi-

cantly between VQA-CP v1 train (left) and test (right) splits. For

instance, ‘white’ and ‘red’ are commonly seen answers in train for

‘What color’, where as ‘black’ is the most frequent answer in test.

These have been computed for a random sample of 60K questions.

in the VQA-CP test split that have not yet been covered

by the groups in the VQA-CP train split. We then pick the

group that covers majority of the concepts in the set, from

the groups that have not yet been assigned to either split and

add that group to the VQA-CP train split. We stop when the

test split has about 1/3rd the dataset and add the remaining

groups (not yet assigned to either split) to the train split.

The above approach results in 98.04% coverage of test

question concepts (set of all unique words in questions af-

ter removing stop words – ‘is’, ‘are’, ‘the’, etc.) in the

train split for VQA-CP v1 (99.01% for VQA-CP v2), and

95.07% coverage of test answers by the train split’s top 1000

answers for VQA-CP v1 (95.72% for VQA-CP v2). VQA-

CP v1 train consists of ∼118K images, ∼245K questions

and ∼2.5M answers (∼121K images, ∼438K questions and

∼4.4M answers for VQA-CP v2 train). VQA-CP v1 test

consists of ∼87K images, ∼125K questions and ∼1.3M an-

swers (∼98K images, ∼220K questions and ∼2.2M answers

for VQA-CP v2 test).

Fig. 2 shows the distribution of answers for several ques-

tion types such as ‘what color’, ‘what sport’, ‘how many’,

etc. for the train (left) and test (right) splits of the VQA-CP

v1 dataset (see supplementary material3 for this analysis of

the VQA-CP v2 dataset). We can see that the distributions

of answers for a given question type is significantly different.

For instance, ‘tennis’ is the most frequent answer for the

question type ‘what sport’ in VQA-CP v1 train split whereas

‘skiing’ is the most frequent answer for the same question

type in VQA-CP v1 test split. However, for VQA v1 dataset,

the distribution for a given question type is similar across

train and val splits [5] (for instance, ‘tennis’ is the most

3Supplementary material is available on the project website: www.cc.

gatech.edu/~aagrawal307/vqa-cp/
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Model Dataset Overall Yes/No Number Other Dataset Overall Yes/No Number Other

per Q-type prior [5] VQA v1 35.13 71.31 31.93 08.86 VQA v2 32.06 64.42 26.95 08.76

VQA-CP v1 08.39 14.70 08.34 02.14 VQA-CP v2 08.76 19.36 11.70 02.39

d-LSTM Q [5] VQA v1 48.23 79.05 33.70 28.81 VQA v2 43.01 67.95 30.97 27.20

VQA-CP v1 20.16 35.72 11.07 08.34 VQA-CP v2 15.95 35.09 11.63 07.11

d-LSTM Q + norm I [23] VQA v1 54.40 79.82 33.87 40.54 VQA v2 51.61 73.06 34.41 39.85

VQA-CP v1 23.51 34.53 11.40 17.42 VQA-CP v2 19.73 34.25 11.39 14.41

NMN [3] VQA v1 54.83 80.39 33.45 41.07 VQA v2 51.62 73.38 33.23 39.93

VQA-CP v1 29.64 38.85 11.23 27.88 VQA-CP v2 27.47 38.94 11.92 25.72

SAN [38] VQA v1 55.86 78.54 33.46 44.51 VQA v2 52.02 68.89 34.55 43.80

VQA-CP v1 26.88 35.34 11.34 24.70 VQA-CP v2 24.96 38.35 11.14 21.74

MCB [10] VQA v1 60.97 81.62 34.56 52.16 VQA v2 59.71 77.91 37.47 51.76

VQA-CP v1 34.39 37.96 11.80 39.90 VQA-CP v2 36.33 41.01 11.96 40.57

Table 1: We compare the performance of existing VQA models on VQA-CP test splits (when trained on respective VQA-CP train splits) to

their performance on VQA val splits (when trained on respective VQA train splits). We find that the performance of all tested existing

models degrades significantly in the new Changing Priors setting compared to the original VQA setting.

frequent answer for both the train and val splits). In the

VQA-CP v1 splits, similar differences can be seen for other

question types as well – ‘are’, ‘which’.

4. Benchmarking VQA Models on VQA-CP

To demonstrate the difficulty of our VQA-CP splits, we

report the performance of the following baselines and exist-

ing VQA models when trained on VQA-CP v1 and VQA-CP

v2 train splits and evaluated on the corresponding test splits.

We compare this with their performance when trained on

VQA v1 and VQA v2 train splits and evaluated on the corre-

sponding val splits. Results are presented in Table 1.

per Q-type prior [5]: Predicting the most popular training

answer for the corresponding question type (e.g., ‘tennis’ for

‘What sport . . . ?’ questions) 4.

Deeper LSTM Question (d-LSTM Q) [5]: Predicting the

answer using question alone (“blind” model).

Deeper LSTM Question + normalized Image (d-LSTM

Q + norm I) [5]: The baseline VQA model.

Neural Module Networks (NMN) [3]: The model designed

to be compositional in nature.

Stacked Attention Networks (SAN) [38]: One of the

widely used models for VQA.

Multimodal Compact Bilinear Pooling (MCB) [10]: The

winner of the VQA Challenge (on real image) 2016.

Brief descriptions of all of these models are in the supp.

From Table 1, we can see that the performance of all

tested existing VQA models drops significantly in the VQA-

4Note that, ideally the performance of this baseline on VQA-CP test set

should be zero because the answers, given the question type, are different

in test and train. But, due to some inter-human disagreement in the datasets,

the performance is slightly higher (Table 1).

CP setting compared to the original VQA setting. Note

that even though the NMN architecture is compositional by

design, their performance degrades on the VQA-CP datasets.

We posit this may be because they use an additional LSTM

encoding of the question to encode priors in the dataset. Also

note that the d-LSTM Q + norm I model suffers the largest

drop in overall performance compared to other VQA models,

perhaps because other models have more powerful visual

processing (for instance, attention on images). Another in-

teresting observation from Table 1 is that the ranking of the

models based on overall performance changes from VQA to

VQA-CP . For VQA , SAN outperforms NMN, whereas for

VQA-CP , NMN outperforms SAN. For a brief discussion

on trends for different question types, please see the supp.

5. GVQA model

We now introduce our Grounded Visual Question An-

swering model (GVQA). While previous VQA approaches

directly map Image-Question tuples (I,Q) to Answers (A),

GVQA breaks down the task of VQA into two steps: Look -

locate the object / image patch needed to answer the question

and recognize the visual concepts in the patch, and Answer -

identify the space of plausible answers from the question and

return the appropriate visual concept from the set of recog-

nized visual concepts by taking into account which concepts

are plausible. For instance, when GVQA is asked ‘What

color is the dog?’, it identifies that the answer should be a

color name, locates the patch in the image corresponding

to dog, recognizes various visual concepts such as ‘black’,

‘dog’, ‘furry’, and finally outputs the concept ‘black’ because

it is the recognized concept corresponding to color. Another

novelty in GVQA is that it treats answering yes/no ques-

tions as a visual verification task, i.e., it verifies the visual

presence/absence of the concept mentioned in the question.

For instance, when GVQA is asked ‘Is the person wearing
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Figure 3: The proposed Grounded Visual Question Answering (GVQA) model.

shorts?’, it identifies that the concept whose visual presence

needs to be verified is ‘shorts’ and answers ‘yes’ or ‘no’ de-

pending on whether it recognizes shorts or not in the image

(specifically, on the patch corresponding to ‘person’).

GVQA is depicted in Figure 3. Given a question and an

image, the question first goes through the Question Classifier

and gets classified into yes/no or non yes/no. For non yes/no

questions, the GVQA components that get activated are – 1)

Visual Concept Classifier (VCC) which takes as input the

image features extracted from CNN and Qmain given by

the question Extractor, 2) Answer Cluster Predictor (ACP)

whose input is the entire question. The outputs of VCC and

ACP are fed to the Answer Predictor (AP) which produces

the answer. For yes/no questions, the GVQA components

that get activated are – 1) VCC (similarly to non yes/no), 2)

Concept Extractor (CE) whose input is the entire question.

The outputs of VCC and CE are fed to the Visual Verifier

(VV) which predicts ‘yes’ or ‘no’. We present the details of

each component below.

Visual Concept Classifier (VCC) is responsible for lo-

cating the image patch that is needed to answer the question,

as well as producing a set of visual concepts relevant to the

located patch. E.g., given ‘What is the color of the bus next

to the car?’, the VCC is responsible for attending on the bus

region and then outputting a set of concepts such as ‘bus’ and

attributes such as its color, count, etc. It consists of a 2-hop

attention module based off of Stacked Attention Networks

([38]) followed by a stack of binary concept classifiers. The

image is fed to the attention module in the form of activa-

tions of the last pooling layer of VGG-Net [32]. To prevent

the memorization of answer priors per question type, the

question is first passed through a language Extractor, a sim-

ple rule that outputs the string (called Qmain) after removing

the question type substring (eg. ‘What kind of’). Qmain is

embedded using an LSTM and then fed into the attention

module. The multi hop attention produces a weighted linear

combination of the image region features from VGG-Net,

with weights corresponding to the degree of attention for

that region. This is followed by a set of fully connected (FC)

layers and a stack of ∼2000 binary concept classifiers that

cover ∼95% of the concepts seen in train. VCC is trained

with a binary logistic loss for every concept.

The set of VCC concepts is constructed by extracting

objects and attributes, pertinent to the answer, from training

QA pairs and retaining the most frequent ones. Object con-

cepts are then grouped into a single group where as attribute

concepts are clustered into multiple small groups using K-

means clustering in Glove embedding space [27], for a total

of C clusters.5 Concept clustering is required for the pur-

pose of generating negative samples required to train the

concept classifiers (for a concept classifier, positive samples

are those which contain that concept either in the question

or the answer). Since the question does not indicate objects

and attributes absent in the image, negative data is generated

using the following assumptions: (1) the attended image

patch required to answer a question has at most one domi-

nant object in it (2) every object has at most one dominant

attribute from each attribute category (e.g., if the color of a

bus is red, it can be used as a negative example for all other

colors). Given these assumptions, when a concept in a clus-

ter is treated as positive, all other concepts in that cluster are

treated as negatives. Note that only a subset of all concept

clusters are activated for each question during training, and

only these activated clusters contribute to the loss.

5We use C = 50 because it gives better clusters than other values. Also,

agglomerative clustering results in similar performance as K-means. More

details in the supplementary material.
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Question Classifier classifies the input question Q into

2 categories: Yes-No and non Yes-No using a Glove embed-

ding layer, an LSTM and FC layers. Yes-No questions feed

into the CE and the rest feed into the ACP.

Answer Cluster Predictor (ACP) identifies the type of

the expected answer (e.g. object name, color, number, etc.).

It is only activated for non yes/no questions. It consists of

a Glove embedding layer and an LSTM, followed by FC

layers that classify questions into one of the C clusters. The

clusters for ACP are created by K-means clustering on (1000)

answer classes by embedding each answer in Glove space.6

Concept Extractor (CE) extracts question concepts

from yes/no questions whose visual presence needs to be

verified in the image, using a POS tag based extraction sys-

tem7. E.g., for ‘Is the cone green?’, we extract ‘green’. The

extracted concept is embedded in Glove space followed by

FC layers to transform this embedding to the same space

as the VCC concepts so that they can be combined by VV.

Please see the description of VV below.

Answer Predictor (AP): Given a set of visual concepts

predicted by the VCC, and a concept category predicted by

the ACP, the AP’s role is to predict the answer. ACP cate-

gories correspond to VCC concept clusters (see ACP’s and

VCC’s output classes in Fig. 3. The colors denote the cor-

respondence). Given this alignment, the output of the ACP

can be easily mapped into a vector with the same dimensions

as the VCC output by simply copying ACP dimensions into

positions pertaining to the respective VCC cluster dimen-

sions. The resulting ACP embedding is added element-wise

to the VCC embedding followed by FC layers and a soft-

max activation, yielding a distribution over 998 VQA answer

categories (top 1000 training answers minus ‘yes’ and ‘no’).

Visual Verifier (VV): Given a set of visual concepts

predicted by the VCC and the embedding of the concept

whose visual presence needs to be verified (given by CE),

the VV’s role is to verify the presence/absence of the con-

cept in VCC’s predictions. Specifically, the CE embedding

is added element-wise to the VCC embedding followed by

FC layers and a softmax activation, yielding a distribution

over two categories – ‘yes’ and ‘no’.

Model Training and Testing: We first train VCC and

ACP on the train split using the cluster labels (for ACP)

and visual concept labels (for VCC)8. The inputs to Answer

Predictor (and Visual Verifier) are the predictions from VCC

and ACP (CE in the case of yes/no questions) on the training

data. During training, we use ground truth labels for yes/no

6We first create the clusters for ACP using the answer classes. We then

create the clusters for VCC by assigning each VCC concept to one of these

ACP clusters using Euclidean distance in Glove embedding space.
7We use NLTK POS tagger. Spacy POS tagger results in similar perfor-

mance. More details in the supplementary material.
8Note that we do not need additional image labels to train VCC, our

labels are extracted automatically from the QA pairs. Same for ACP.

Dataset Model Overall Yes/No Number Other

VQA-CP v1 SAN [38] 26.88 35.34 11.34 24.70

GVQA (Ours) 39.23 64.72 11.87 24.86

VQA-CP v2 SAN [38] 24.96 38.35 11.14 21.74

GVQA (Ours) 31.30 57.99 13.68 22.14

Table 2: Performance of GVQA (our model) compared to SAN on

VQA-CP datasets. GVQA consistently outperforms SAN.

and non yes/no questions for the Question Classifier. During

testing, we first run the Question Classifier to classify ques-

tions into yes/no and non yes/no. And feed the questions

into their respective modules to obtain predictions on the test

set. Please refer to the supp. for implementation details.

6. Experimental Results

6.1. Experiments on VQA­CP v1 and VQA­CP v2

Model accuracies: Table 2 shows the performance of our

GVQA model in comparison to SAN (the model which

GVQA is built off of) on VQA-CP v1 and VQA-CP v2

datasets using the VQA evaluation metric [5]. Accuracies

are presented broken down into Yes/No, Number and Other

categories. As it can be seen from Table 2, the proposed

architectural improvements (in GVQA) over SAN show a

significant boost in the overall performance for both the

VQA-CP v1 (12.35%) and VQA-CP v2 (6.34%) datasets.

It is worth noting that owing to the modular nature of the

GVQA architecture, one may easily swap in other attention

modules into the VCC. Interestingly, on the VQA-CP v1

dataset, GVQA also outperforms MCB [10] and NMN [3]

(Table 1) on the overall metric (mainly for yes/no questions),

in spite of being built off of a relatively simpler attention

module from SAN, and using relatively less powerful image

features (VGG-16) as compared to ResNet-152 being used

in MCB. On the VQA-CP v2 dataset, GVQA outperforms

NMN in overall metric (as well as for number questions) and

MCB for yes/no and number questions.

To check if our particular VQA-CP split was causing

some irregularities in performance, we created four sets of

VQA-CP v2 splits with different random seeds. This also

led to a large portion of the dataset (84%) being covered

across the test splits. The results show that GVQA consis-

tently outperforms SAN across all four splits with average

improvement being 7.14% (standard error: 1.36). Please see

supp. for performance on each split.

Performance of Model Components Question Classifier:

On the VQA-CP v1 test set, the LSTM based question classi-

fier obtains 99.84% accuracy. ACP: The Top-1 test accuracy

is 54.06%, with 84.25% for questions whose answers are in

attribute clusters and 43.17% for questions whose answers

are in object clusters. The Top-3 accuracy rises to 65.33%.

Note that these accuracies are computed using the automat-

ically created clusters. VCC: The weighted mean test F1

score across all classifiers is 0.53. The individual concepts
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are weighted as per the number of positive samples, reflect-

ing the coverage of that concept in the test set. Please refer

to the supp. for accuracies on the VQA-CP v2 dataset.

6.2. Role of GVQA Components

In order to evaluate the role of various GVQA compo-

nents, we report the experimental results (on VQA-CP v1) by

replacing each component in GVQA (denoted by “- <compo-

nent>”) with its traditional counterpart, i.e., modules used in

traditional VQA models (denoted by “ + <traditional coun-

terpart>”). For instance, GVQA - CE + LSTM represents a

model where CE in GVQA has been replaced with an LSTM.

The results are presented in Table 3 along with the result of

the full GVQA model for reference.

GVQA - Qmain + Qfull: GVQA’s performance when

the entire question (Qfull) is fed into VCC (as opposed to

after removing the question type (Qmain)) is 33.55% (over-

all), which is 5.68% (absolute) less than that with Qmain.

Note that even with feeding the entire question, GVQA out-

performs SAN, thus demonstrating that removing question

type information helps but isn’t the main factor behind the

better performance of GVQA. As an additional check, we

trained a version of SAN where the input is Qmain instead

of Qfull. Results on VQA-CP v2 show that this version of

SAN performs 1.36% better than the original SAN, however

still 4.98% worse than GVQA (with Qmain). Please see

supp. for detailed performance of this version of SAN.

GVQA - CE + LSTM: We replace CE with an LSTM

(which is trained end-to-end with the Visual Verifier (VV)

using VQA loss). The overall performance drops by 11.95%,

with a drop of 28.76% for yes/no questions. This is an

expected result, given that Table 2 shows that GVQA signifi-

cantly outperforms SAN on yes/no questions and the CE is

a crucial component of the yes/no pipeline.

GVQA - ACP + LSTM: We replace ACP with an LSTM

(which is trained end-to-end with the Answer Predictor (AP)

using VQA loss). The overall performance is similar to

GVQA. But, the presence of ACP makes GVQA transparent

and interpretable (see Section 6.4).

GVQA - VCCloss: We remove the VCC loss and treat

the output layer of VCC as an intermediate layer whose acti-

vations are passed to the Answer Predictor (AP) and trained

end-to-end with AP using VQA loss. The overall perfor-

mance improves by 1.72% with biggest improvement in the

performance on other questions (3.19%). This suggests that

introducing the visual concept (semantic) loss in between

the model pipeline hurts. Although removing VCC loss and

training end-to-end with VQA loss achieves better perfor-

mance, the model is no longer transparent (see Section 6.4).

Using VCC loss or not is a design choice one would make

based on the desired accuracy vs. interpretability trade off.

GVQA - VCCloss - ACP + LSTM: Replacing ACP with

Model Overall Yes/No Number Other

GVQA - Qmain + Qfull 33.55 51.64 11.51 24.43

GVQA - CE + LSTM 27.28 35.96 11.88 24.85

GVQA - ACP + LSTM 39.40 64.72 11.73 25.33

GVQA - VCCloss 40.95 65.50 12.32 28.05

GVQA - VCCloss - ACP + LSTM 38.86 65.73 11.58 23.11

GVQA 39.23 64.72 11.87 24.86

Table 3: Experimental results when each component in GVQA

(denoted by “- <component>”) is replaced with its corresponding

traditional counterpart (denoted by “ + <traditional counterpart>”).

VQA v1 VQA v2

Model Overall Yes/No Overall Yes/No

SAN 55.86 78.54 52.02 68.89

GVQA 51.12 76.90 48.24 72.03

Ensemble (SAN, SAN) 56.56 79.03 52.45 69.17

Ensemble (GVQA, SAN) 56.91 80.42 52.96 72.72

Oracle (SAN, SAN) 60.85 83.92 56.68 74.37

Oracle (GVQA, SAN) 63.77 88.98 61.96 85.65

Table 4: Results of GVQA and SAN on VQA v1 and VQA v2

when trained on the corresponding train splits.

an LSTM on top of GVQA - VCCloss hurts the overall

performance by 2.09% with biggest drop (4.94%) for “other”

questions (see GVQA - VCCloss and GVQA - VCCloss -

ACP + LSTM rows in Table 3). This suggests that ACP

helps significantly (as compared to an LSTM) in the absence

of VCC loss (and it performs similar to an LSTM in the

presence of VCC loss, as seen above). In addition, ACP adds

interpretability to GVQA.

6.3. Experiments on VQA v1 and VQA v2

We also trained and evaluated GVQA on train and val

splits of the VQA v1 [5] and VQA v2 [13] datasets (results

in Table 49). On VQA v1, GVQA achieves 51.12% overall

accuracy, which is 4.74% (absolute) less than SAN. This gap

is not surprising because VQA v1 has well-established heavy

language priors that existing models (including SAN) can

“memorize” from train set and exploit on the test set (since

test set contains same priors as train set), whereas GVQA is

designed not to. As vision improves, grounded models like

GVQA may show improved performance over models that

leverage priors from training data. Moreover, it is important

to note that the gain (GVQA acc - SAN acc) on VQA-CP v1

(12.35% absolute) is much higher than the loss (SAN acc -

GVQA acc) on VQA v1 (4.74% absolute).

On VQA v2, GVQA under performs SAN by 3.78% over-

all, which is less than SAN acc - GVQA acc on VQA v1.

And it outperforms SAN by 3.14% for yes/no questions.

9We present overall and yes/no accuracies only. Please refer to the supp.

for performance on number and other categories.
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This shows that when the priors are weaker (in VQA v2

compared to those in VQA v1), the gap between GVQA and

SAN’s performance decreases. We also trained and evalu-

ated GVQA- VCCloss on both the VQA v1 and VQA v2

datasets and found that it performs worse than GVQA on

VQA v1 and similar to GVQA on VQA v2. So in addi-

tion to interpretability, GVQA is overall better than GVQA-

VCCloss on these original VQA splits.

In order to check whether GVQA has strengths comple-

mentary to SAN, we computed the oracle of SAN’s and

GVQA’s performance – Oracle (GVQA, SAN), i.e., we

pick the predictions of the model with higher accuracy for

each test instance. As it can be seen from Table 4, the Or-

acle (GVQA, SAN)’s overall performance is 7.91% higher

than that of SAN for VQA v1 (9.94% for VQA v2) sug-

gesting that GVQA and SAN have complementary strengths.

Also, note that Oracle (GVQA, SAN) is higher than Oracle

(SAN, SAN) for both VQA v1 and VQA v2, suggesting

that GVQA’s complementary strengths are more than that of

another SAN model (with a different random initialization).

Inspired by this, we report the performance of the en-

semble of GVQA and SAN Ensemble (GVQA, SAN) in

Table 4, where the ensemble combines the outputs from the

two models using product of confidences of each model. We

can see that Ensemble (GVQA, SAN) outperforms Ensemble

(SAN, SAN) by 0.35% overall for VQA v1 (and by 0.51%

for VQA v2). It is especially better for yes/no questions. We

also found that the ensemble of GVQA- VCCloss with SAN

performs worse than Ensemble (SAN, SAN) for both the

VQA datasets (refer to supp. for accuracies). Hence, GVQA

is a better complement of SAN than GVQA- VCCloss, in

addition to being more transparent.

6.4. Transparency

The architecture design of GVQA makes it more trans-

parent than existing VQA models because it produces inter-

pretable intermediate outputs (the outputs of VCC, ACP and

the concept string extracted by the CE) unlike most existing

VQA models. We show some example predictions from

GVQA in Fig. 4. We can see that the intermediate outputs

provide insights into why GVQA is predicting what it is

predicting and hence enable a system designer to identify

the causes of error. This is not easy to do in existing VQA

models. Fig. 5 shows two other examples (one success and

one failure) comparing and contrasting how GVQA’s inter-

mediate outputs can help explain successes and failures (and

thus, enabling targeted improvements) which is not possible

to do for SAN and most other existing VQA models. See the

supplementary material for more such examples.

7. Conclusion

GVQA is a first step towards building models which are

visually grounded by design. Future work involves develop-

What sport are they playing ?

Top ACP 

Cluster

Predictions

# 3 #16

Top VCC

(per cluster)
baseball 

(0.962)

(0.9884)
tennis

frisbee

baseball

#19

(0.0046)
surfing

skateboarding

parasailing

(0.0040)
skiing

snowboarding

downhill

skateboarding

(0.001)

skiing

(0.0009)

Prediction baseball

Image

Question Is the person smiling ?

smiling

(0.555)

woman

(0.417)

man

(0.190)

yes

Q-classifier non yes/no yes/no

ACP is deactivated. CE is activated. 
Extracted concept: smiling

Top VCC predictions for the cluster 
containing ‘smiling’

Figure 4: Qualitative examples from GVQA. Left: We show top

three answer cluster predictions (along with random concepts from

each cluster) by ACP. Corresponding to each cluster predicted by

ACP, we show the top visual concept predicted by VCC. Given these

ACP and VCC predictions, the Answer Predictor (AP) predicts the

correct answer ‘baseball’. Right: Smiling is the concept extracted

by the CE whose visual presence in VCC’s predictions is verified

by the Visual Verifier, resulting in ‘yes’ as the final answer.

What color are the bananas ?

ACP says answer should be a color

What color are his pants ?

VCC says: bananas, green, many,

food, 50

GVQA answers green

ACP says answer should be a color

VCC says: dirt, black, pants, 1,

baseball, park

SAN answers yellow SAN answers blue

GVQA answers black

Correct answer: grayCorrect answer: green

Figure 5: Left: GVQA’s prediction (‘green’) can be explained as

follows – ACP predicts that the answer should be a color. Of the

various visual concepts predicted by VCC, the only concept that

is about color is green. Hence, GVQA’s output is ‘green’. SAN

incorrectly predicts ‘yellow’. SAN’s architecture doesn’t facilitate

producing an explanation of why it predicted what it predicted,

unlike GVQA. Right: Both GVQA and SAN incorrectly answer

the question. GVQA is incorrect perhaps because VCC predicts

‘black’, instead of ‘gray’. In order to dig further into why VCC’s

prediction is incorrect, we can look at the attention map (in the

supp.), which shows that the attention is on the pants for the right

leg, but on the socks (black in color) for the left leg. So, perhaps,

VCC’s “black” prediction is based on the attention on the left leg.

ing models that can utilize the best of both worlds (visual

grounding and priors), such as, answering a question based

on the knowledge about the priors of the world (sky is usually

blue, grass is usually green) when the model’s confidence in

the answer predicted as result of visual grounding is low.
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