
Defense against Universal Adversarial Perturbations

Naveed Akhtar* Jian Liu* Ajmal Mian

*The authors contributed equally to this work.

Computer Science and Software Engineering

The University of Western Australia

naveed.akhtar@uwa.edu.au, jian.liu@research.uwa.edu.au, ajmal.mian@uwa.edu.au

Abstract

Recent advances in Deep Learning show the existence

of image-agnostic quasi-imperceptible perturbations that

when applied to ‘any’ image can fool a state-of-the-art net-

work classifier to change its prediction about the image

label. These ‘Universal Adversarial Perturbations’ pose

a serious threat to the success of Deep Learning in prac-

tice. We present the first dedicated framework to effectively

defend the networks against such perturbations. Our ap-

proach learns a Perturbation Rectifying Network (PRN) as

‘pre-input’ layers to a targeted model, such that the targeted

model needs no modification. The PRN is learned from real

and synthetic image-agnostic perturbations, where an ef-

ficient method to compute the latter is also proposed. A

perturbation detector is separately trained on the Discrete

Cosine Transform of the input-output difference of the PRN.

A query image is first passed through the PRN and verified

by the detector. If a perturbation is detected, the output of

the PRN is used for label prediction instead of the actual im-

age. A rigorous evaluation shows that our framework can

defend the network classifiers against unseen adversarial

perturbations in the real-world scenarios with up to 97.5%
success rate. The PRN also generalizes well in the sense

that training for one targeted network defends another net-

work with a comparable success rate.

1. Introduction

Deep Neural Networks are at the heart of the current ad-

vancements in Computer Vision and Pattern Recognition,

providing state-of-the-art performance on many challenging

classification tasks [9], [12], [14], [16], [36], [37]. However,

Moosavi-Dezfooli et al. [25] recently showed the possibil-

ity of fooling the deep networks to change their prediction

about ‘any’ image that is slightly perturbed with the Univer-

sal Adversarial Perturbations. For a given network model,

these image-agnostic (hence universal) perturbations can be

computed rather easily [25], [26]. The perturbations remain

Figure 1. Adding quasi-imperceptible universal adversarial pertur-

bations [25] can fool neural networks. The proposed framework

rectifies the images to restore the network predictions. The pat-

terns removed by rectification are separately analyzed to decide

on the presence of adversarial perturbations in images. The shown

‘perturbations’ and ‘removed patterns’ are normalized on different

scales for better visualization.

quasi-imperceptible (see Fig. 1), yet the adversarial exam-

ples generated by adding the perturbations to the images

fool the networks with alarmingly high probabilities [25].

Furthermore, the fooling is able to generalize well across

different network models.

Being image-agnostic, universal adversarial perturba-

tions can be conveniently exploited to fool models on-the-

fly on unseen images by using pre-computed perturbations.

This even eradicates the need of on-board computational

capacity that is needed for generating image-specific per-

turbations [7], [21]. This fact, along the cross-model gener-

alization of universal perturbations make them particularly

relevant to the practical cases where a model is deployed in

13389

a possibly hostile environment. Thus, defense against these

perturbations is a necessity for the success of Deep Learn-

ing in practice. The need for counter-measures against these

perturbations becomes even more pronounced considering

that the real-world scenes (e.g. sign boards on roads) modi-

fied by the adversarial perturbations can also behave as ad-

versarial examples for the networks [17].

This work proposes the first dedicated defense against

the universal adversarial perturbations [25]. The major con-

tributions of this paper are as follows:

• We propose to learn a Perturbation Rectifying Network

(PRN) that is trained as the ‘pre-input’ of a targeted

network model. This allows our framework to provide

defense to already deployed networks without the need

of modifying them.

• We propose a method to efficiently compute synthetic

image-agnostic adversarial perturbations to effectively

train the PRN. The successful generation of these

perturbations complements the theoretical findings of

Moosavi-Dezfooli [26].

• We also propose a separate perturbation detector that

is learned from the Discrete Cosine Transform of the

image rectifications performed by the PRN for clean

and perturbed examples.

• Rigorous evaluation is performed by defending the

GoogLeNet [37], CaffeNet [16] and VGG-F net-

work [4]1, demonstrating up to 97.5% success rate on

unseen images possibly modified with unseen pertur-

bations. Our experiments also show that the proposed

PRN generalizes well across different network models.

2. Related work

The robustness of image classifiers against adversarial

perturbations has gained significant attention in the last few

years [6], [7], [29], [32], [34], [35], [40]. Deep neural

networks became the center of attention in this area after

Szegedy et al. [39] first demonstrated the existence of ad-

versarial perturbations for such networks. See [1] for a re-

cent review of literature in this direction. Szegedy et al. [39]

computed adversarial examples for the networks by adding

quasi-imperceptible perturbations to the images, where the

perturbations were estimated by maximizing the network’s

prediction error. Although these perturbations were image-

specific, it was shown that the same perturbed images were

able to fool multiple network models. Szegedy et al. re-

ported encouraging results for improving the model robust-

ness against the adversarial attacks by using adversarial ex-

amples for training, a.k.a. adversarial training.

1The choice of the networks is based on the computational feasibility

of generating the adversarial perturbations for the evaluation protocol in

Section 5. However, our approach is generic in nature.

Goodfellow et al. [10] built on the findings in [39] and

developed a ‘fast gradient sign method’ to efficiently gen-

erate adversarial examples that can be used for training the

networks. They hypothesized that it is the linearity of the

deep networks that makes them vulnerable to the adversar-

ial perturbations. However, Tanay and Griffin [41] later

constructed the image classes that do not suffer from the

adversarial examples for the linear classifiers. Their argu-

ments about the existence of the adversarial perturbations

again point towards the over-fitting phenomena, that can be

alleviated by regularization. Nevertheless, it remains un-

clear how a network should be regularized for robustness

against adversarial examples.

Moosavi-Dezfooli [27] proposed the DeepFool algo-

rithm to compute image-specific adversarial perturbations

by assuming that the loss function of the network is lin-

earizable around the current training sample. In contrast

to the one-step perturbation estimation [10], their approach

computes the perturbation in an iterative manner. They also

reported that augmenting training data with adversarial ex-

amples significantly increases the robustness of networks

against the adversarial perturbations. Baluja and Fischer [2]

trained an Adversarial Transformation Network to gener-

ate adversarial examples against a target network. Liu et

al. [19] analyzed the transferability of adversarial exam-

ples. They studied this property for both targeted and non-

targeted examples, and proposed an ensemble based ap-

proach to generate the examples with better transferability.

The above-mentioned techniques mainly focus on gener-

ating adversarial examples, and address the defense against

those examples with adversarial training. In-line with our

take on the problem, few recent techniques also directly fo-

cus on the defense against the adversarial examples. For in-

stance, Lu et al. [22] mitigate the issues resulting from the

adversarial perturbations using foveation. Their main ar-

gument is that the neural networks (for ImageNet [33]) are

robust to the foveation-induced scale and translation varia-

tions of the images, however, this property does not gener-

alize to the perturbation transformations.

Papernot et al. [30] used distillation [13] to make the

neural networks more robust against the adversarial pertur-

bations. However, Carlini and Wagner [3] later introduced

adversarial attacks that can not be defended by the distil-

lation method. Kurakin et al. [18] specifically studied the

adversarial training for making large models (e.g. Inception

v3 [38]) robust to perturbations, and found that the training

indeed provides robustness against the perturbations gen-

erated by the one-step methods [10]. However, Tramer et

al. [42] found that this robustness weakens for the adver-

sarial examples learned using different networks i.e. for the

black-box attacks [19]. Hence, ensemble adversarial train-

ing was proposed in [42] that uses adversarial examples

generated by multiple networks.

3390

Dziugaite et al. [5] studied the effects of JPG compres-

sion on adversarial examples and found that the compres-

sion can sometimes revert network fooling. Nevertheless,

it was concluded that JPG compression alone is insufficient

as a defense against adversarial attacks. Prakash et al. [31]

took advantage of localization of the perturbed pixels in

their defense. Lu et al. [20] proposed SafetyNet for detect-

ing and rejecting adversarial examples for the conventional

network classifiers (e.g. VGG19 [11]) that capitalizes on the

late stage ReLUs of the network to detect the perturbed ex-

amples. Similarly, a proposal of appending the deep neural

networks with detector subnetworks was also presented by

Metzen et al. [23]. In addition to the classification, adver-

sarial examples and robustness of the deep networks against

them have also been recently investigated for the tasks of

semantic segmentation and object detection [8], [21], [43].

Whereas the central topic of all the above-mentioned lit-

erature is the perturbations computed for individual images,

Moosavi-Dezfooli [25] were the first to show the existence

of image-agnostic perturbations for neural networks. These

perturbations were further analyzed in [26], whereas Met-

zen et al. [24] also showed their existence for semantic im-

age segmentation. To date, no dedicated technique exists

for defending the networks against the universal adversarial

perturbations, which is the topic of this paper.

3. Problem formulation

Below, we present the notions of universal adversarial

perturbations and the defense against them more formally.

Let ℑc ∈ R
d denote the distribution of the (clean) natural

images in a d-dimensional space, such that, a class label is

associated with its every sample Ic ∼ ℑc. Let C(.) be a

classifier (a deep network) that maps an image to its class

label, i.e. C(Ic) : Ic → ℓ ∈ R. The vector ρ ∈ R
d is

a universal adversarial perturbation for the classifier, if it

satisfies the following constraint:

P
Ic∼ℑc

(
C(Ic) 6= C(Ic + ρ)

)
≥ δ s.t. ||ρ||p ≤ ξ, (1)

where P(.) is the probability, ||.||p denotes the ℓp-norm of a

vector such that p ∈ [1,∞), δ ∈ (0, 1] denotes the fooling

ratio and ξ is a pre-defined constant. In the text to follow,

we alternatively refer to ρ as the perturbation for brevity.

In (1), the perturbations in question are image-agnostic,

hence Moosavi-Dezfooli et al. [25] termed them universal2.

According to the stated definition, the parameter ξ controls

the norm of the perturbation. For the quasi-imperceptible

perturbations, the value of this parameter should be very

small as compared to the image norm ||Ic||p. On the other

hand, a larger δ is required for the perturbation to fool the

2A single perturbation that satisfies (1) for any classifier is referred as

‘doubly universal’ by Moosavi-Dezfooli et al. [25]. We focus on the singly

universal perturbations in this work.

classifier with a higher probability. In this work, we let

δ ≥ 0.8 and consider the perturbations constrained by their

ℓ2 and ℓ∞ norms. For the ℓ2-norm, we let ξ = 2, 000,

and select ξ = 10 for the ℓ∞-norm perturbations. For both

types, these values are ∼ 4% of the means of the respective

image norms used in our experiments (in Section 5), which

is the same as [25].

To defend C(.) against the perturbations, we seek two

components of the defense mechanism. (1) A perturbation

‘detector’ D(Iρ/c) : Iρ/c → [0, 1] and (2) a perturbation

‘rectifier’ R(Iρ) : Iρ → Î, where Iρ = Ic + ρ. The

detector determines whether an unseen image Iρ/c is per-

turbed or clean. The objective of the rectifier is to com-

pute a transformation Î of the perturbed image such that

P
Ic∼ℑc

(
C (̂I) = C(Ic)

)
≈ 1. Notice that the rectifier does

not seek to improve the prediction of C(.) on the rectified

version of the image beyond the classifier’s performance on

the clean/original image. This ensures stable induction of

R(.). Moreover, the formulation allows us to compute Î

such that ||̂I− Ic||2 > 0. We leverage this property to learn

R(.) as the pre-input layers of C(.) in an end-to-end fashion.

4. Proposed approach

We draw on the insights from the literature reviewed in

Section 2 to develop a framework for defending a (possibly)

targeted network model against universal adversarial pertur-

bations. Figure 2 shows the schematics of our approach to

learn the ‘rectifier’ and the ‘detector’ components of the de-

fense framework. We use the Perturbation Rectifying Net-

work (PRN) as the ‘rectifier’, whereas a binary classifier is

eventually trained to detect the adversarial perturbations in

the images. The framework uses both real and synthetic

perturbations for training. The constituents of the proposed

framework are explained below.

4.1. Perturbation Rectifying Network (PRN)

At the core of our technique is the Perturbation Rectify-

ing Network (PRN), that is trained as pre-input layers to the

targeted network classifier. The PRN is attached to the first

layer of the classification network and the joint network is

trained to minimize the following cost:

J (θp,bp) =
1

N

N∑

i=1

L(ℓ∗i , ℓi), (2)

where ℓ∗i and ℓi are the labels predicted by the joint net-

work and the targeted network respectively, such that ℓi is

necessarily computed for the clean image. For the N train-

ing examples, L(.) computes the loss, whereas θp and bp

denote the PRN weight and bias parameters.

In Eq. (2) we define the cost over the parameters of PRN

only, which ensures that the (already deployed) targeted net-

3391

Figure 2. Training schematics: From the clean data, image-agnostic perturbations are computed and augmented with the synthetic perturba-

tions. Both clean and perturbed images are fed to the Perturbation Rectifying Network (PRN). The PRN is learned by attaching it to the first

layer of the targeted network such that the parameters of the targeted network are kept frozen during the PRN training. The perturbation

detection mechanism extracts discriminative features from the difference between the inputs and outputs of the PRN and learns a binary

classifier. To classify an unseen test image Iρ/c, first D(Iρ/c) = B(F(Iρ/c − R(Iρ/c))) is computed. If a perturbation is detected then

R(Iρ/c) is used as the input to the classifier C(.) instead of the actual test image.

work does not require any modification for the defense be-

ing provided by our framework. This strategy is orthogonal

to the existing defense techniques that either update the tar-

geted model using adversarial training to make the networks

more robust [18], [42]; or incorporate architectural changes

to the targeted network, which may include adding a sub-

network to the model [23] or tapping into the activations of

certain layers to detect the adversarial examples [20]. Our

defense mechanism acts as an external wrapper for the tar-

geted network such that the PRN (and the detector) trained

to counter the adversarial attacks can be kept secretive in

order refrain from potential counter-counter attacks3. This

is a highly desirable property of defense frameworks in the

real-world scenarios. Moosavi-Dezfooli [25] noted that the

universal adversarial perturbations can still exist for a model

even after their adversarial training. The proposed frame-

work constitutionally caters for this problem.

We train the PRN using both clean and adversarial ex-

amples to ensure that the image transformation learned by

our network is not biased towards the adversarial examples.

For training, ℓi is computed separately with the targeted net-

work for the clean version of the ith training example. The

PRN is implemented as 5-ResNet blocks [12] sandwiched

by convolution layers. The 224×224×3 input image is fed

to Conv 3× 3, stride = 1, feature maps = 64, ‘same’ convo-

lution; followed by 5 ResNet blocks, where each block con-

sists of two convolution layers with ReLU activations [28],

resulting in 64 feature maps. The feature maps of the last

ResNet block are processed by Conv 3 × 3, stride = 1, fea-

ture maps = 16, ‘same’ convolution; and then Conv 3 × 3,

stride = 1, feature maps = 3, ‘same’ convolution.

3PRN+targeted network are end-to-end differentiable and the joint net-

work can be susceptible to stronger attacks if PRN is not secretive. How-

ever, stronger perturbations are also more easily detectable by our detector.

We use the cross-entropy loss [9] for training the PRN

with the help of ADAM optimizer [15]. The exponential de-

cay rates for the first and the second moment estimates are

set to 0.9 and 0.999 respectively. We set the initial learning

rate to 0.01, and decay it by 10% after each 1K iterations.

We used mini-batch size of 64, and trained the PRN for a

given targeted network for at least 5 epochs.

4.2. Training data

The PRN is trained using clean images as well as their

adversarial counterparts, constructed by adding perturba-

tions to the clean images. We compute the latter by first

generating a set of perturbations ρ ∈ P ⊆ R
d following

Moosavi-Dezfooli et al. [25]. Their algorithm computes a

universal perturbation in an iterative manner. In its inner

loop (ran over the training images), the algorithm seeks a

minimal norm vector [27] to fool the network on a given

image. The current estimate of ρ is updated by adding to

it the sought vector and back-projecting the resultant vec-

tor onto the ℓp ball of radius ξ. The outer loop ensures that

the desired fooling ratio is achieved over the complete train-

ing set. Generally, the algorithm requires several passes on

the training data to achieve an acceptable fooling ratio. We

refer to [25] for further details on the algorithm.

A PRN trained with more adversarial patterns underly-

ing the training images is expected to perform better. How-

ever, it becomes computationally infeasible to generate a

large (e.g. > 100) number of perturbations using the above-

mentioned algorithm. Therefore, we devise a mechanism to

efficiently generate synthetic perturbations ρs ∈ Ps ⊆ R
d

to augment the set of available perturbations for training

the PRN. The synthetic perturbations are computed using

the set P while capitalizing on the theoretical results of

[26]. To generate the synthetic perturbations, we com-

3392

Algorithm 1 ℓ∞-norm synthetic perturbation generation

Input: Pre-generated perturbation samples P ⊆ R
d, num-

ber of new samples to be generated η, threshold ξ.

Output: Synthetic perturbations Ps ⊆ R
d

1: set Ps = {}; ℓ2-threshold = E

[
{||ρi∈P ||2}

|P|
i=1

]
;

Pn = P with ℓ2-normalized elements.

2: while |Ps| < η do

3: set ρs = 0

4: while ||ρs||∞ < ξ do

5: z ∼ unif(0, 1)⊙ ξ

6: ρs = ρs + (z ⊙
rand
∼ Pn)

7: end while

8: if ||ρs||2 ≥ ℓ2-threshold then

9: Ps = Ps

⋃
ρs

10: end if

11: end while

12: return

pute the vectors that satisfy the following conditions: (c1)

ρs ∈ Ψ
+
P : Ψ+

P = positive orthant of the subspace spanned

by the elements of P . (c2) ||ρs||2 ≈ E [||ρ||2, ∀ρ ∈ P] and

(c3)4 ||ρs||∞ ≈ ξ. The procedure for computing the syn-

thetic perturbations that are constrained by their ℓ∞-norm

is summarized in Algorithm 1. We refer to the supplemen-

tary material of the paper for the algorithm to compute the

ℓ2-norm perturbations.

To generate a synthetic perturbation, Algorithm 1

searches for ρs in Ψ
+
P by taking small random steps in the

directions governed by the unit vectors of the elements of

P . The random walk continues until the ℓ∞-norm of ρs re-

mains smaller than ξ. The algorithm selects the found ρs as

a valid perturbation if the ℓ2-norm of the vector is compa-

rable to the Expected value of the ℓ2-norms of the vectors

in P . For generating the ℓ2-norm perturbations, the cor-

responding algorithm given in the supplementary material

terminates the random walk based on ||ρs||2 in line-4, and

directly selects the computed ρs as the desired perturbation.

Analyzing the robustness of the deep networks against the

universal adversarial perturbations, Moosavi-Dezfooli [26]

showed the existence of shared directions (across different

data points) along which a decision boundary induced by

a network becomes highly positively curved. Along these

vulnerable directions, small universal perturbations exist

that can fool the network to change its predictions about

the labels of the data points. Our algorithms search for the

synthetic perturbations along those directions, whereas the

knowledge of the desired directions is borrowed from P .

Fig. 3 exemplifies the typical synthetic perturbations

generated by our algorithms for the ℓ2 and ℓ∞ norms. It

4For the perturbations restricted by their ℓ2-norm only, this condition

is ignored. In that case, (c2) automatically ensures ||ρs||2 ≈ ξ.

Figure 3. Illustration of synthetic perturbations computed for the

CaffeNet [16]: The corresponding closest matches in set P are

also shown. The dot product between the vectorized perturbations

with their closest matches are 0.71 and 0.83 respectively for the ℓ2
and ℓ∞-norm perturbations.

also shows the corresponding closest matches in the set P
for the given perturbations. The fooling ratios for the syn-

thetic perturbations is generally not as high as the original

ones, nevertheless the values remain in an acceptable range.

In our experiments (Section 5), augmenting the training data

with the synthetic perturbations consistently helped in early

convergence and better performance of the PRN. We note

that the acceptable fooling ratios demonstrated by the syn-

thetic perturbations in this work complement the theoretical

findings in [26]. Once the set of synthetic perturbations Ps

is computed, we construct P∗ = P
⋃
Ps and use it to per-

turb the images in our training data.

4.3. Perturbation detection

While studying the JPG compression as a mechanism

to mitigate the effects of the (image-specific) adversarial

perturbations, Dziugaite et al. [5] also suggested the Dis-

crete Cosine Transform (DCT) as a possible candidate to

reduce the effectiveness of the perturbations. Our experi-

ments, reported in supplementary material, show that the

DCT based compression can also be exploited to reduce the

network fooling ratios under the universal adversarial per-

turbations. However, it becomes difficult to decide on the

required compression rate, especially when it is not known

whether the image in question is actually perturbed or not.

Unnecessary rectification often leads to degraded perfor-

mance of the networks on the clean images.

Instead of using the DCT to remove the perturbations, we

exploit it for perturbation detection in our approach. Using

the training data that contains both clean and perturbed im-

ages, say I
train
ρ/c , we first compute F(Itrain

ρ/c − R(Itrain
ρ/c)) and

then learn a binary classifier B(F) → [0, 1] with the data

labels denoting the input being ‘clean’ or ‘perturbed’. We

implement F(.) to compute the log-absolute values of the

2D-DCT coefficients of the gray-scaled image in the ar-

3393

gument, whereas an SVM is learned as B(.). The func-

tion D(.) = B(F(.)) forms the detector component of

our defense framework. To classify a test image Iρ/c, we

first evaluate D(Iρ/c), and if a perturbation is detected

then C(R(Iρ/c)) is evaluated for classification instead of

C(Iρ/c), where C(.) denotes the targeted network classifier.

5. Experiments

We evaluated the performance of our technique by

defending CaffeNet [16], VGG-F network [4] and

GoogLeNet [37] against universal adversarial perturbations.

The choice of the networks is based on the computational

feasibility of generating the perturbations for our experi-

mental protocol. The same framework is applicable to other

networks. Following Moosavi-Dezfooli [25], we used the

ILSVRC 2012 [16] validation set of 50, 000 images to per-

form the experiments.

Setup: From the available images, we randomly selected

10, 000 samples to generate a total of 50 image-agnostic

perturbations for each network, such that 25 of those per-

turbations were constrained to have ℓ∞-norm equal to 10,

whereas the ℓ2-norm of the remaining 25 was restricted to

2, 000. The fooling ratio of all the perturbations was lower-

bounded by 0.8. Moreover, the maximum dot product be-

tween any two perturbations of the same type (i.e. ℓ2 or

ℓ∞) was upper bounded by 0.15. This ensured that the con-

structed perturbations were significantly different from each

other, thereby removing any potential bias from our evalu-

ation. From each set of the 25 perturbations, we randomly

selected 20 perturbations to be used with the training data,

and the remaining 5 were used with the testing data.

We extended the sets of the training perturbations us-

ing the method discussed in Section 4.2, such that there

were total 250 perturbations in each extended set, hence-

forth denoted as P∗
∞ and P∗

2 . To generate the training data,

we first randomly selected 40, 000 samples from the avail-

able images and performed 5 corner crops of dimensions

224 × 224 × 3 to generate 200, 000 samples. For creating

the adversarial examples with the ℓ2-type perturbations, we

used the set P∗
2 and randomly added perturbations to the

images with 0.5 probability. This resulted in ∼ 100, 000
samples each for the clean and the perturbed images, which

were used to train the approach for the ℓ2-norm perturba-

tions for a given network. We repeated this procedure using

the set P∗
∞ to separately train it for the ℓ∞-type perturba-

tions. Note that, for a given targeted network we performed

the training twice to evaluate the performance of our tech-

nique for both types of perturbations.

For a thorough evaluation, two protocols were followed

to generate the testing data. Both protocols used the unseen

10, 000 images that were perturbed with the 5 unseen test-

ing perturbations. Notice that the evaluation has been kept

doubly-blind to emulate the real-world scenario for a de-

ployed network. For Protocol-A, we used the whole 10, 000
test images and randomly corrupted them with the 5 test

perturbations with a 0.5 probability. For the Protocol-B, we

chose the subset of the 10, 000 test images that were cor-

rectly classified by the targeted network in their clean form,

and corrupted that subset with 0.5 probability using the 5
testing perturbations. The existence of both clean and per-

turbed images with equal probability in our test sets espe-

cially ensures a fair evaluation of the detector.

Evaluation metric: We used four different metrics for a

comprehensive analysis of the performance of our tech-

nique. Let Ic and Iρ denote the sets containing clean and

perturbed test images. Similarly, let Îρ and Îρ/c be the sets

containing the test images rectified by PRN, such that all

the images in Îρ were perturbed (before passing through

the PRN) whereas the images in Îρ/c were similarly per-

turbed with 0.5 probability, as per our protocol. Let
∗

I be

the set comprising the test images such that each image is

rectified by the PRN only if it were classified as perturbed

by the detector D. Furthermore, let acc(.) be the function

computing the prediction accuracy of the target network on

a given set of images. The formal definitions of the metrics

that we used in our experiments are stated below:

1. PRN-gain (%) =
acc(Îρ)−acc(Iρ)

acc(Îρ)
× 100.

2. PRN-restoration (%) =
acc(Îρ/c)

acc(Ic)
× 100.

3. Detection rate (%) = Accuracy of D.

4. Defense rate (%) = acc(
∗

I)
acc(Ic)

× 100.

The names of the metric are in accordance with the se-

mantic notions associated with them. Notice that the PRN-

restoration is defined over the rectification of both clean and

perturbed images. We do this to account for any loss in the

classification accuracy of the targeted network incurred by

the rectification of the clean images by the PRN. It was ob-

served in our experiments that unnecessary rectification of

the clean images can sometimes lead to a minor (1 - 2%)

reduction in the classification accuracy of the targeted net-

work. Hence, we used a more strict definition of the restora-

tion by PRN for a more transparent evaluation. This defi-

nition is also in-line with our underlying assumption of the

practical scenarios where we do not know a prior if the test

image is clean or perturbed.

Same/Cross-norm evaluation: In Table 1, we summa-

rize the results of our experiments for defending the

GoogLeNet [37] against the perturbations. The table sum-

marizes two kinds of experiments. For the first kind, we

used the same types of perturbations for testing and training.

For instance, we used the ℓ2-type perturbations for learning

the framework components (rectifier + detector) and then

3394

Figure 4. Representative examples to visualize the perturbed images and their rectified version computed by the PRN. The labels predicted

by the networks along the prediction confidence are also given. The examples are provided for the ℓ∞-type perturbations. Please refer to

the supplementary material of the paper for more examples.

Table 1. Defense summary for the GoogLeNet [37]: The mentioned types of the perturbations (i.e. ℓ2 or ℓ∞) are for the testing data.

Metric

Same test/train perturbation type Different test/train perturbation type

ℓ2-type ℓ∞-type ℓ2-type ℓ∞-type

Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B

PRN-gain (%) 77.0 77.1 73.9 74.2 76.4 77.0 72.6 73.4

PRN-restoration (%) 97.0 92.4 95.6 91.3 97.1 92.7 93.8 89.3

Detection rate (%) 94.6 94.6 98.5 98.4 92.4 92.3 81.3 81.2

Defense rate (%) 97.4 94.8 96.4 93.7 97.5 94.9 94.3 91.6

also used the ℓ2-type perturbations for testing. The results

of these experiments are summarized in the left half of the

table. We performed the ‘same test/train perturbation type’

experiments for both ℓ2 and ℓ∞ perturbations, for both test-

ing protocols (denoted as Prot-A and Prot-B in the table). In

the second kind of experiments, we trained our framework

on one type of perturbation and tested for the other. The

right half of the table summarizes the results of those exper-

iments. The mentioned perturbation types in the table are

for the testing data. The same conventions will be followed

in the similar tables for the other two targeted networks be-

low. Representative examples to visualize the perturbed and

rectified images (by the PRN) are shown in Fig. 4. Please

refer to the supplementary material for more illustrations.

From Table 1, we can see that in general, our framework

is able to defend the GoogLeNet very successfully against

the universal adversarial perturbations that are specifically

targeted at this network. The Prot-A captures the perfor-

mance of our framework when an attacker might have added

a perturbation to an unseen image without knowing if the

clean image would be correctly classified by the targeted

network. The Prot-B represents the case where the pertur-

bation is added to fool the network on an image that it had

previously classified correctly. Note that the difference in

the performance of our framework for Prot-A and Prot-B is

related to the accuracy of the targeted network on clean im-

ages. For a network that is 100% accurate on clean images,

the results under Prot-A and Prot-B would match exactly.

The results would differ more for the less accurate classi-

fiers, as also evident from the subsequent tables.

In Table 2, we summarize the performance of our frame-

work for the CaffeNet [16]. Again, the results demonstrate

a good defense against the perturbations. The final Defense-

rate for the ℓ2-type perturbation for Prot-A is 96.4%. Un-

der the used metric definition and the experimental protocol,

one interpretation of this value is as follows. With the de-

fense wrapper provided by our framework, the performance

of the CaffeNet is expected to be 96.4% of its original per-

formance (in the perfect world of clean images), such that

there is an equal chance of every query image to be per-

turbed or clean5. Considering that the fooling rate of the

network was at least 80% on all the test perturbations used

in our experiments, it is a good performance recovery.

In Table 3, the defense summary for the VGG-F net-

work [4] is reported, which again shows a decent perfor-

mance of our framework. Interestingly, for both CaffeNet

and VGG-F, the existence of the ℓ∞-type perturbations in

the test images could be detected very accurately by our de-

tector for the ‘different test/train perturbation type’. How-

ever, it was not the case for the GoogLeNet. We found that

for the ℓ∞-type perturbations (with ξ = 10) the correspond-

ing ℓ2-norm of the perturbations was generally much lower

for the GoogLeNet (∼ 2, 400 on avg.) as compared to the

CaffeNet and VGG-F (∼ 2, 850 on avg.). This made the

detection of the ℓ∞-type perturbations more challenging for

the GoogLeNet. The dissimilarity in these values indicate

that there is a significant difference between the decision

5We emphasize that our evaluation protocols and metrics are carefully

designed to analyze the performance in the real-world situations where it

is not known apriori whether the query is perturbed or clean.

3395

Table 2. Defense summary for the CaffeNet [16]: The mentioned types of the perturbations (i.e. ℓ2 or ℓ∞) are for the testing data.

Metric

Same test/train perturbation type Different test/train perturbation type

ℓ2-type ℓ∞-type ℓ2-type ℓ∞-type

Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B

PRN-gain (%) 67.2 69.0 78.4 79.1 65.3 66.8 77.3 77.7

PRN-restoration (%) 95.1 89.9 93.6 88.7 92.2 87.1 91.7 85.8

Detection rate (%) 98.1 98.0 97.8 97.9 84.2 84.0 97.9 98.0

Defense rate (%) 96.4 93.6 95.2 92.5 93.6 90.1 93.2 90.0

Table 3. Defense summary for the VGG-F network [4]: The mentioned types of the perturbations (i.e. ℓ2 or ℓ∞) are for the testing data.

Metric

Same test/train perturbation type Different test/train perturbation type

ℓ2-type ℓ∞-type ℓ2-type ℓ∞-type

Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B Prot-A Prot-B

PRN-gain (%) 72.1 73.3 84.1 84.3 68.3 69.2 84.7 84.8

PRN-restoration (%) 93.2 86.2 90.3 83.2 88.8 81.2 91.1 83.3

Detection rate (%) 92.5 92.5 98.6 98.6 92.5 92.5 98.1 98.1

Defense rate (%) 95.5 91.4 92.2 87.9 90.0 85.9 93.7 89.1

boundaries induced by the GoogLeNet and the other two

networks, which is governed by the significant architectural

differences of the networks.

Cross-architecture generalisation: With the above obser-

vation, it was anticipated that the cross-network defense

performance of our framework would be better for the net-

works with the (relatively) similar architectures. This pre-

diction was verified by the results of our experiments in Ta-

bles 4 and 5. These tables show the performance for ℓ2 and

ℓ∞-type perturbations where we used the ‘same test/train

perturbation type’. The results are reported for protocol A.

For the corresponding results under protocol B, we refer

to the supplementary material. From these tables, we can

conclude that our framework generalizes well across differ-

ent networks, especially across the networks that have (rel-

atively) similar architectures. We conjecture that the cross-

network generalization is inherited by our framework from

the cross-model generalization of the universal adversarial

perturbations. Like our technique, any framework for the

defense against these perturbations can be expected to ex-

hibit similar characteristics.

6. Conclusion

We presented the first dedicated framework for the de-

fense against universal adversarial perturbations [25] that

not only detects the presence of these perturbations in the

images but also rectifies the perturbed images so that the

targeted classifier can reliably predict their labels. The

proposed framework provides defense to a targeted model

without the need of modifying it, which makes our tech-

nique highly desirable for the practical cases. Moreover, to

prevent the potential counter-counter measures, it provides

the flexibility of keeping its ‘rectifier’ and ‘detector’ com-

ponents secretive. We implement the ‘rectifier’ as a Pertur-

bation Rectifying Network (PRN), whereas the ‘detector’

is implemented as an SVM trained by exploiting the im-

Table 4. ℓ2-type cross-network defense (Prot-A): Testing is done

using the perturbations generated on the networks in the left-most

column. The networks to generate the training perturbations are

indicated in the second row.

PRN-restoration (%)

VGG-F CaffeNet GoogLeNet

VGG-F [4] 93.2 88.9 81.7

CaffeNet [16] 91.3 95.1 72.0

GoogLeNet [37] 84.7 85.9 97.0

Defense rate (%)

VGG-F CaffeNet GoogLeNet

VGG-F [4] 95.5 91.5 82.4

CaffeNet [16] 94.8 96.2 77.3

GoogLeNet [37] 88.3 87.3 97.4

Table 5. ℓ∞-type cross-network defense summary (Prot-A).

PRN-restoration (%)

VGG-F CaffeNet GoogLeNet

VGG-F [4] 90.3 86.9 74.1

CaffeNet [16] 85.7 93.6 69.3

GoogLeNet [37] 85.9 83.3 95.6

Defense rate (%)

VGG-F CaffeNet GoogLeNet

VGG-F [4] 92.2 88.9 74.8

CaffeNet [16] 93.5 95.2 73.8

GoogLeNet [37] 88.4 85.4 96.4

age transformations performed by the PRN. For an effective

training, we also proposed a method to efficiently compute

image-agnostic perturbations synthetically. The efficacy of

our framework is demonstrated by a successful defense of

CaffeNet [16], VGG-F network [4] and GoogLeNet [37]

against the universal adversarial perturbations.

Acknowledgement This research was supported by ARC

grant DP160101458. The Titan Xp used for this research

was donated by NVIDIA Corporation.

3396

References

[1] N. Akhtar and A. Mian. Threat of adversarial attacks on

deep learning in computer vision: A survey. arXiv preprint

arXiv:1801.00553, 2018.

[2] S. Baluja and I. Fischer. Adversarial transformation net-

works: Learning to generate adversarial examples. arXiv

preprint arXiv:1703.09387, 2017.

[3] N. Carlini and D. Wagner. Towards evaluating the robustness

of neural networks. In Security and Privacy (SP), 2017 IEEE

Symposium on, pages 39–57. IEEE, 2017.

[4] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[5] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy. A study of

the effect of jpg compression on adversarial images. arXiv

preprint arXiv:1608.00853, 2016.

[6] A. Fawzi, O. Fawzi, and P. Frossard. Analysis of classi-

fiers’ robustness to adversarial perturbations. arXiv preprint

arXiv:1502.02590, 2015.

[7] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard. Ro-

bustness of classifiers: from adversarial to random noise. In

Advances in Neural Information Processing Systems, pages

1632–1640, 2016.

[8] V. Fischer, M. C. Kumar, J. H. Metzen, and T. Brox. Ad-

versarial examples for semantic image segmentation. arXiv

preprint arXiv:1703.01101, 2017.

[9] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.

2016.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[13] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[14] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten.

Densely connected convolutional networks. arXiv preprint

arXiv:1608.06993, 2016.

[15] D. Kingma and J. Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[17] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial exam-

ples in the physical world. arXiv preprint arXiv:1607.02533,

2016.

[18] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ma-

chine learning at scale. arXiv preprint arXiv:1611.01236,

2016.

[19] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into trans-

ferable adversarial examples and black-box attacks. arXiv

preprint arXiv:1611.02770, 2016.

[20] J. Lu, T. Issaranon, and D. Forsyth. Safetynet: Detecting

and rejecting adversarial examples robustly. arXiv preprint

arXiv:1704.00103, 2017.

[21] J. Lu, H. Sibai, E. Fabry, and D. Forsyth. No need to

worry about adversarial examples in object detection in au-

tonomous vehicles. arXiv preprint arXiv:1707.03501, 2017.

[22] Y. Luo, X. Boix, G. Roig, T. Poggio, and Q. Zhao. Foveation-

based mechanisms alleviate adversarial examples. arXiv

preprint arXiv:1511.06292, 2015.

[23] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff.

On detecting adversarial perturbations. arXiv preprint

arXiv:1702.04267, 2017.

[24] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer. Uni-

versal adversarial perturbations against semantic image seg-

mentation. arXiv preprint arXiv:1704.05712, 2017.

[25] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and

P. Frossard. Universal adversarial perturbations. CVPR,

2017.

[26] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard,

and S. Soatto. Analysis of universal adversarial perturba-

tions. arXiv preprint arXiv:1705.09554, 2017.

[27] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deep-

fool: a simple and accurate method to fool deep neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2574–2582, 2016.

[28] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In Proceedings of the 27th

international conference on machine learning (ICML-10),

pages 807–814, 2010.

[29] A. Nguyen, J. Yosinski, and J. Clune. Deep neural networks

are easily fooled: High confidence predictions for unrecog-

nizable images. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 427–436,

2015.

[30] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami.

Distillation as a defense to adversarial perturbations against

deep neural networks. In Security and Privacy (SP), 2016

IEEE Symposium on, pages 582–597. IEEE, 2016.

[31] A. Prakash, N. Moran, S. Garber, A. DiLillo, and J. Storer.

Deflecting adversarial attacks with pixel deflection. arXiv

preprint arXiv:1801.08926, 2018.

[32] A. Rozsa, E. M. Rudd, and T. E. Boult. Adversarial di-

versity and hard positive generation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 25–32, 2016.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015.

[34] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet. Adversar-

ial manipulation of deep representations. arXiv preprint

arXiv:1511.05122, 2015.

3397

[35] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Ac-

cessorize to a crime: Real and stealthy attacks on state-of-

the-art face recognition. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Se-

curity, pages 1528–1540. ACM, 2016.

[36] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[37] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 1–9, 2015.

[38] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.

Rethinking the inception architecture for computer vision.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2818–2826, 2016.

[39] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,

I. Goodfellow, and R. Fergus. Intriguing properties of neural

networks. arXiv preprint arXiv:1312.6199, 2013.

[40] P. Tabacof and E. Valle. Exploring the space of adversarial

images. In Neural Networks (IJCNN), 2016 International

Joint Conference on, pages 426–433. IEEE, 2016.

[41] T. Tanay and L. Griffin. A boundary tilting persepective

on the phenomenon of adversarial examples. arXiv preprint

arXiv:1608.07690, 2016.

[42] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. Mc-

Daniel. Ensemble adversarial training: Attacks and defenses.

arXiv preprint arXiv:1705.07204, 2017.

[43] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial examples for semantic segmentation and object

detection. arXiv preprint arXiv:1703.08603, 2017.

3398

