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Figure 1: Our technique allows to extract for the first time accurate 3D human body models, including hair and clothing,

from a single video sequence of the person moving in front of the camera such that the person is seen from all sides.

Abstract

This paper describes a method to obtain accurate 3D

body models and texture of arbitrary people from a single,

monocular video in which a person is moving. Based on

a parametric body model, we present a robust processing

pipeline to infer 3D model shapes including clothed peo-

ple with 4.5mm reconstruction accuracy. At the core of our

approach is the transformation of dynamic body pose into

a canonical frame of reference. Our main contribution is

a method to transform the silhouette cones corresponding

to dynamic human silhouettes to obtain a visual hull in a

common reference frame. This enables efficient estimation

of a consensus 3D shape, texture and implanted animation

skeleton based on a large number of frames. Results on 4

different datasets demonstrate the effectiveness of our ap-

proach to produce accurate 3D models. Requiring only an

RGB camera, our method enables everyone to create their

own fully animatable digital double, e.g., for social VR ap-

plications or virtual try-on for online fashion shopping.

1. Introduction

A personalized realistic and animatable 3D model of

a human is required for many applications, including vir-

tual and augmented reality, human tracking for surveillance,

gaming, or biometrics. This model should comprise the

person-specific static geometry of the body, hair and cloth-

ing, alongside a coherent surface texture.

One way to capture such models is to use expensive ac-

tive scanners. But size and cost of such scanners prevent

their use in consumer applications. Alternatively, multi-

view passive reconstruction from a dense set of static body

pose images can be used [22, 46]. However, it is hard for

people to stand still for a long time, and so this process is

time-consuming and error-prone. Also, consumer RGB-D

cameras can be used to scan 3D body models [39], but these

specialized sensors are not as widely available as video.

Further, all these methods merely reconstruct surface shape

and texture, but no rigged animation skeleton inside. All

aforementioned applications would benefit from the ability

to automatically reconstruct a personalized movable avatar

from monocular RGB video.

Despite remarkable progress in reconstructing 3D body

models [6, 71, 81] or free-form surface [86, 44, 47, 21]

from depth data, 3D reconstruction of humans in clothing

from monocular video (without a pre-recorded scan of the

person) has not been addressed before. In this work, we es-

timate the shape of people in clothing from a single video

in which the person moves. Some methods infer shape

parameters of a parametric body model from a single im-

age [7, 20, 5, 27, 83, 34], but the reconstruction is limited to

the parametric space and can not capture personalized shape

detail and clothing geometry.

To estimate geometry from a video sequence, we could

jointly optimize a single free-form shape constrained by a
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Figure 2. Overview of our method. The input to our method is an image sequence with corresponding segmentations. We first calculate

poses using the SMPL model (a). Then we unpose silhouette camera rays (unposed silhouettes depicted in red) (b) and optimize for the

subjects shape in the canonical T-pose (c). Finally, we are able to calculate a texture and generate a personalized blend shape model (d).

body model to fit a set of F images. Unfortunately, this re-

quires to optimize F poses at once and more importantly it

requires storing F models in memory during optimization

which makes it computationally expensive and unpractical.

The key idea of our approach is to generalize visual

hull methods [41] to monocular videos of people in mo-

tion. Standard visual hull methods capture a static shape

from multiple views. Every camera ray through a silhouette

point in the image casts a constraint on the 3D body shape.

To make visual hulls work for monocular video of a mov-

ing person it is necessary to “undo” the human motion and

bring it to a canonical frame of reference. In this work, the

geometry of people (in wide or tight clothing) is represented

as a deviation from the SMPL parametric body model [40]

of naked people in a canonical T-pose; this model also fea-

tures a pose-dependent non-rigid surface skinning. We first

estimate an initial body shape and 3D pose at each frame by

fitting the SMPL model to 2D detections similar to [37, 7].

Given such fits, we associate every silhouette point in ev-

ery frame to a 3D point in the body model. We then trans-

form every projection ray according to the inverse deforma-

tion model of its corresponding 3D model point; we call

this operation unposing (Fig. 3). After unposing the rays

for all frames we obtain a visual hull that constrains the

body shape in a canonical T-pose. We then jointly optimize

body shape parameters and free-form vertex displacements

to minimize the distance between 3D model points and un-

posed rays. This allows us to efficiently optimize a single

displacement surface on top of SMPL constrained to fit all

frames at once, which requires storing only one model in

memory (Fig. 2). Our technique allows for the first time

extracting accurate 3D human body models, including hair

and clothing, from a single video sequence of the person

moving in front of the camera such that the person is seen

from all sides.

Our results on several 3D datasets show that our method

can reconstruct 3D human shape to a remarkable accuracy

of 4.5 mm (even higher 3.1 mm with ground truth poses) de-

spite monocular depth ambiguities. We provide our dataset

and source code of our method for research purposes [1].

2. Related Work

Shape reconstruction of humans in clothing can be clas-

sified according to two criteria: (1) the type of sensor used

and (2) the kind of template prior used for reconstruction.

Free-form methods typically use multi-view cameras, depth

cameras or fusion of sensors and reconstruct surface ge-

ometry quite accurately without using a strong prior on the

shape. In more unconstrained and ambiguous settings, such

as in the monocular case, a parametric body model helps to

constrain the problem significantly. Here we review free-

form and model-based methods and focus on methods for

monocular images.

Free-form methods reconstruct the moving geometry by

deforming a mesh [12, 19, 10] or using a volumetric repre-

sentation of shape [30, 2]. The advantage of these meth-

ods is that they allow reconstruction of general dynamic

shapes provided that a template surface is available initially.

While flexible, such approaches require high-quality multi-

view input data which makes them impractical for many

applications. Only one approach showed reconstruction of

human pose and deforming cloth geometry from monoc-

ular video using a pre-captured shape template [74]. Us-

ing a depth camera, systems like KinectFusion [33, 45] al-

low reconstruction of 3D rigid scenes and also appearance

models [82] by incrementally fusing geometry in a canon-

ical frame. A number of methods adapt KinectFusion for

human body scanning [58, 39, 79, 17]. The problem is

that these methods require separate shots at different time

instances. The person thus needs to stand still while the

camera is turned around, or subtle pose changes need to be

explicitly compensated. The approach in [44] generalized

KinectFusion to non-rigid objects. The approach performs

non-rigid registration between the incoming depth frames

and a concurrently updated, initially incomplete, template.

While general, such template-free approaches [45, 31, 60]

are limited to slow and careful motions. One way to

make fusion and tracking more robust is by using multiple

kinects [21, 47] or multi-view [63, 38, 16]; such methods

achieve impressive reconstructions but do not register all
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frames to the same template and focus on different appli-

cations such as streaming or remote rendering for telepres-

ence, e.g., in the holoportation project [47]. Pre-scanning

the object or person to be tracked [86, 19] reduces the prob-

lem to tracking the non-rigid deformations. Some works are

in-between free-form and model-based methods. In [23, 69]

they pre-scan a template and insert a skeleton and in [78]

they use a skeleton to regularize dynamic fusion. Our work

is also related to the seminal work of [14, 15] where they

align visual hulls over time to improve shape estimation.

In the articulated case, they need to segment and track ev-

ery body part separately and then merge the information to-

gether in a coarse voxel model; more importantly, they need

multi-view input. In [35] they compensate for small mo-

tions of captured objects by de-blurring occupancy images

but no results are shown for moving humans. In [85] they

reconstruct the shape of clothed humans in outdoor environ-

ments from RGB video, requiring the subject to stand still.

All these works use either multi-view systems, depth cam-

eras or do not handle moving humans. In contrast, we use

a single RGB video of a moving person, which makes the

problem significantly harder as geometry can not be directly

unwarped as it is done in depth fusion papers.

Model-based. Several works leverage a parametric body

model for human pose and shape estimation from im-

ages [52]. Early models in computer vision were based

on simple primitives [43, 24, 48, 59]. Recent ones are

learned from thousands of scans of real people and en-

code pose, and shape deformations [4, 28, 40, 87, 51].

Some works reconstruct the body shape from depth data

sequences [71, 29, 76, 81, 6] exploiting the temporal in-

formation. Typically, a single shape and multiple poses

are optimized to exploit the temporal information. Us-

ing multi-view some works have shown performance cap-

ture outdoors [54, 55] by leveraging a sum of Gaussians

body model [64] or using a pre-computed template [77].

A number of works are restricted to estimating the shape

parameters of a body model [5, 25] from multiple views

or single images with manually clicked points; silhouettes

shading cues and color have been used for inference. Some

works fit a body model to images using manual interven-

tion [83, 34, 57] with the goal of image manipulation. Shape

and clothing from a single image is recovered in [26, 13]

but the user needs to click points in the image and select the

clothing types from a database. In [36] they obtain shape

from contour drawings. The advance in 2D pose detec-

tion [70, 11, 32] has made 3D pose and shape estimation

possible in challenging scenarios. In [7, 37] they fit a 3D

body model [40] to 2D detections; since only model param-

eters are optimized and these methods heavily rely on 2D

detections, results tend to be close to the shape space mean.

In [3] they add a silhouette term to reduce this effect.

Shape Under Clothing. The aforementioned methods ig-

nore clothing or treat it as noise, but a number of works ex-

plicitly reason about clothing. Typically, these methods in-

corporate constraints such as the body should lie inside the

clothing silhouette. In [5] they estimate body shape under

clothing by optimizing model parameters for a set of images

of the same person in different clothing. In [73, 75] they ex-

ploit temporal sequences of scans to estimate shape under

clothing. Results are usually restricted to the (naked) model

space. In [80] they estimate detailed shape under cloth-

ing from scan sequences by optimizing a free-form surface

constrained by a body model. The approach in [50] jointly

captures clothing geometry and body shape using separate

meshes but requires 3D scan sequences as input. Double-

Fusion [66] reconstructs clothing geometry and inner body

shape from a single depth camera in real time.

Learning based. Only very few works predict human

shape from images using learning methods since images an-

notated with ground truth shape, pose and clothing geome-

try are hardly available. A few exceptions are the approach

of [20] that predicts shape from silhouettes using a neural

network and [18] that predicts garment geometry from a

single image. Predictions in [20] are restricted to model

shape space and tend to look over-smooth; only garments

seen in the dataset can be recovered in [18]. Recent works

leverage 2D annotations to train networks for the task of 3D

pose estimation [42, 53, 84, 65, 68, 56]. Such works typ-

ically predict a stick figure or bone skeleton only, and can

not estimate body shape or clothing.

3. Method

Given a single monocular RGB video depicting a mov-

ing person, our goal is to generate a personalized 3D model

of the subject, which consists of the shape of body, hair

and clothing, a personalized texture map, and an underly-

ing skeleton rigged to the surface. Non-rigid surface defor-

mations in new poses are thus entirely skeleton-driven. Our

method consists of 3 steps: 1) pose reconstruction (Sec. 3.2)

2) consensus shape estimation (Sec. 3.3) and 3) frame re-

finement and texture map generation (Sec. 3.4). Our main

contribution is step 2), the consensus shape estimation; step

1) builds on previous work and step 3) to obtain texture and

time-varying details is optional.

In order to estimate the consensus shape of the subject,

we first calculate the 3D pose in each frame (Sec. 3.2). We

extend the method of [7] to make it more robust and enforce

better temporal coherence and silhouette overlap. In the

second step, the consensus shape is calculated as detailed

in Sec. 3.3. The consensus shape is efficiently optimized

to maximally explain the silhouettes at each frame instance.

Due to time-varying cloth deformations the posed consen-

sus shape might be slightly misaligned with the frame sil-

houettes. Hence, in order to compute texture and capture
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time-varying details, in step 3) deviations from the consen-

sus shape are optimized per frame in a sliding window ap-

proach (Sec. 3.4). Given the refined frame-wise shapes we

can compute the texture map. Our method relies on a fore-

ground segmentation of the images. Therefore, we adopt

the CNN based video segmentation method of [9] and train

it with 3-4 manual segmentations per sequence. In order

to counter ambiguities in monocular 3D human shape re-

construction, we use the SMPL body model [40] as starting

point. In the following, we briefly explain how we adapt

original SMPL body model for our problem formulation.

3.1. SMPL Body Model with Offsets

SMPL is a parameterized model of naked humans that

takes 72 pose and 10 shape parameters and returns a tri-

angulated mesh with N = 6890 vertices. The shape β

and pose θ deformations are applied to a base template T,

which in the original SMPL model corresponds to the sta-

tistical mean shape in the training scans Tµ:

M(β,θ) =W (T (β,θ), J(β),θ,W) (1)

T (β,θ) = Tµ +Bs(β) +Bp(θ) (2)

where W is a linear blend-skinning function applied to a

rest pose T (β,θ) based on the skeleton joints J(β) and

after pose-dependent deformations Bp(θ) and shape de-

pendent deformations Bp(θ) are applied. Shape-dependent

deformations Bs(β) model subject identity. However the

Principal Component shape space of SMPL was learned

from scans of naked humans, so clothing and other personal

surface detail cannot be modeled. In order to personalize the

SMPL model, we simply add a set of auxiliary variables or

offsets D ∈ R
3N from the template:

T (θ,β,D) = Tµ +Bs(β) +Bp(θ) +D (3)

Such offsets D allow us to deform the model to better ex-

plain details and clothing. Offsets are optimized in step 2.

3.2. Pose Reconstruction

The approach in [7] optimizes SMPL model parameters

to fit a set of 2D joint detections in the image. As with

any monocular method, scale is an inherent ambiguity. To

mitigate this effect, we take inspiration from [54] and ex-

tend [7] such that it jointly considers P = 5 frames and

optimizes a single shape and P = 5 poses. Note that opti-

mizing many more frames would become computationally

very expensive and many models would have to be simulta-

neously stored in memory. Our experiments reveal that even

when optimizing over P = 5 poses the scale ambiguity pre-

vails. The reason is that pose differences induce additional

3D ambiguities which cannot be uniquely decoupled from

global size, even on multiple frames [67, 61, 49]. Hence,

if the height of the person is known, we incorporate it as

Figure 3. The camera rays that form the image silhouette (left)

are getting unposed into the canonical T-pose (right). This allows

efficient shape optimization on a single model for multiple frames.

constraint during optimization. If height is not known the

shape reconstructions of our method are still accurate up to

a scale factor (height estimation is roughly off by 2-5 cm).

The output of initialization are SMPL model shape param-

eters β0 that we keep fixed during subsequent frame-wise

pose estimation. In order to estimate 3D pose more reliably,

we extend [7] by incorporating a silhouette term:

Esilh(θ) = G(woIrn(θ)C+wi(1− Irn(θ))C̄) (4)

with the silhouette image of the rendered model Irn(θ), dis-

tance transform of observed image mask C and its inverse

C̄, weights w. To be robust to local minima we optimize

at 4 different levels of a Gaussian pyramid G. We further

update the method to use state of the art 2D joint detec-

tions [11, 70] and a single-modal A-pose prior. We train the

prior from SMPL poses fitted against body scans of peo-

ple in A-pose. Further, we enforce a temporal smoothness

and initialize the pose in a new frame with the estimated

pose θ in the previous frame. If the objective error gets too

large, we re-initialize the tracker by setting the pose to zero.

While optimization in batches of frames would be beneficial

it slows down computation and we have not found signifi-

cant differences in pose accuracy. The output of this step is

a set of poses {θp}
F
p=1 for the F frames in the sequence.

3.3. Consensus Shape

Given the set of estimated poses we could jointly opti-

mize a single refined shape matching all original F poses,

which would yield a complex, non-convex optimization

problem. Instead, we merge all the information into an un-

posed canonical frame, where refinement is computation-

ally easier. At every frame a silhouette places a new con-

straint on the body shape; specifically, the set of rays going

from the camera to the silhouette points define a constraint

cone, see Fig. 3. Since the person is moving, the pose is

changing. Our key idea is to unpose the cone defined by

the projection rays using the estimated poses. Effectively,

we invert the SMPL function for every ray. In SMPL, every

vertex v deforms according to the following equation:

v
′
i =

K
∑

k=1

wk,iGk(θ, J(β))(vi + bs,i(β) + bP,i(θ)) (5)
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where Gk is the global transformation of joint k and

bs,i(β) ∈ R and bP,i(θ) are elements of Bs(β) and Bp(θ)
corresponding to i − th vertex. For every ray r we find its

closest 3D model point. From Eq. (5) it follows that the

inverse transformation applied to a ray r corresponding to

model point v′
i is

r =

(

K
∑

k=1

wk,iGk(θ, J(β))

)−1

r
′ − bP,i(θ). (6)

Doing this for every ray effectively unposes the silhou-

ette cone and places constraints on a canonical T-pose,

see Fig. 3. Unposing removes blend-shape calculations

from the optimization problem and significantly reduces the

memory foot-print of the method. Without unposing the

vertex operations and the respective Jacobians would have

to be computed for every frame at every update of the shape.

Given the set of unposed rays for F silhouettes (we use

F = 120 in all experiments), we formulate an optimization

in the canonical frame

Econs = Edata + wlpElp + wvarEvar + wsymEsym (7)

and minimize it with respect to shape parameters β of a

template model and the vertex offsets D defined in Eq. 3.

The objective Econs consists of a data term Edata and three

regularization terms Elp, Evar, Esym with weights w∗ that

balance its influence.

Data Term measures the distance between vertices and

rays. Point to line distances can be efficiently computed

expressing rays using Plucker coordinates (r = rm, rn).
Given a set of correspondences (vi, r) ∈ M the data term

equals

Edata =
∑

(v,r)∈M

ρ(v × rn − rm) (8)

where ρ is the Geman-McClure robust cost function, here

applied to the point to line distance. Since the canonical

pose parameters are all zero (θ = 0) it follows from Eq. 3

that vertex positions are a function of shape parameters and

offsets v(β0,D) = Ti(β0,D) = (vµ,i + bs,i(β0) + di),
where di ∈ R

3 is the offset in D corresponding to vertex vi.

In our notation, we remove the dependency on parameters

for clarity. The remaining terms regularize the optimization.

Laplacian Term. We enforce smooth deformation by

adding the Laplacian mesh regularizer [62]:

Elp =

N
∑

i=1

τl,i||L(vi)− δi||
2

(9)

where δ = L(v(β0,0)) and L is the Laplace operator. The

term forces the Laplacian of the optimized mesh to be simi-

lar to the Laplacian of the mesh at initialization (where off-

sets D = 0).

Body Model Term. We penalize deviations of the re-

constructed free-form vertices v(β0,D) from vertices ex-

plained by the SMPL model v(β,0):

Evar =

N
∑

i=1

τv,i||vi(β0,D)− vi(β,0)||
2

(10)

Symmetry Term. Humans are usually axially symmet-

rical with respect to the Y-axis. Since the body model is

nearly symmetric, we add a constraint on the offsets alone

that enforces a symmetrical shape:

Esym =
∑

(i,j)∈S

τs,i,j

∣

∣

∣

∣

∣

∣
[−1, 1, 1]T · di − dj

∣

∣

∣

∣

∣

∣

2

(11)

where S contains all pairs of Y-symmetric vertices. We

phrase this as a soft-constraint to allow potential asymme-

tries in clothing wrinkles and body shapes. Since the refined

consensus shape still has the mesh topology of SMPL, we

can apply the pose-based deformation space of SMPL to

simulate surface deformation in new skeleton poses.

Implementation Details. Body regions that are typically

unclothed or where silhouettes are noisy (face, ears, hands,

and feet) are more regularized towards the body model

using per-vertex weights τ . We optimize Econs using

a “dog-leg” trust region method using the chumpy auto-

differentiation framework. We alternate minimizing Econs

with respect to model parameters and offsets and finding

point to line correspondences. We also re-initialize Elp,

Evar, Esym. More implementation details and runtime met-

rics are given in the supplementary material.

3.4. Frame Refinement and Texture Generation

After calculating a global shape for the given sequence,

we aim to capture the temporal variations. We adapt the en-

ergy in Eq. 7 to process frames sequentially. The optimiza-

tion is initialized with the preceding frame and regularized

with neighboring frames:

Eref,j =

f+m∑

j=f−m

ψjEdata,j + wvarEvar,j

+wlpElp,j + wlastElast,j (12)

where ψj = 1 for j = k and ψj = wneigh < 1 for neigh-

boring frames. Hence, wneigh defines the influence of neigh-

boring frames and Elast regularizes the reconstruction to the

result of the preceding frame. To create the texture, we

warp our estimated canonical model back to each frame,

back-project the image color to all visible vertices, and fi-

nally generate a texture image by calculating the median of

the most orthogonal texels from all views. An example of

keyframes we use for texture mapping and the resulting tex-

ture image is shown in Fig. 4.
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Figure 4. We back-project the image color from several frames to

all visible vertices to generate a full texture map.

4. Experiments

We study the effectiveness of our method, qualitatively

and quantitatively, in different scenarios. For quantitative

evaluation, we used two publicly available datasets consist-

ing of 3D scan sequences of humans in motion: with mini-

mal clothing (MC) (DynamicFAUST [8]) and with clothing

(BUFF [80]). Since these datasets were recorded without

RGB sensors we simply render images of the scans using

a virtual camera and use them as input. In order to evalu-

ate our method on more varied clothing and backgrounds,

we captured a new test dataset (People-Snapshot dataset),

and present qualitative results. To the best of our knowl-

edge, our method is the first approach that enables detailed

human body model reconstruction in clothing from a sin-

gle monocular RGB video without requiring a pre-scanned

template or manually clicked points. Thus, there exist no

methods with the same setting as ours. Hence, we pro-

vide a quantitative comparison to the state-of-the-art RGB-

D based approach KinectCap [6] on their dataset. The im-

age sequences and ground truth scans were provided by the

authors of [6]. While reconstruction from monocular videos

is much harder than from depth videos, a comparison is still

informative. In all experiments, the method’s parameters

are set to two constant values, one set for clothed and one

set for people in MC, which are empirically determined.

4.1. Results on Rendered Images

We take all 9 sequences of 5 different subjects in the

BUFF dataset and all 9 sequences of 9 subjects from the Dy-

namicFaust dataset performing “Hip” movements, featur-

ing strong fabric movement or soft tissue dynamics respec-

tively. Each dynamic sequence consists of 300-800 frames.

To simulate the subject rotating in front of a camera, we cre-

ate a virtual camera at 2.5 meters away from the 3D scans of

the subject. We rotate the camera in a circle around the per-

son moving one time per sequence. The foreground masks

are easily obtained from the alpha channel of the rendered

images. For BUFF we render images with real dynamic

textures; for DynamicFAUST since textures are not avail-

able we rendered shaded models. In Fig. 6, we show

some examples of our reconstruction results on image se-

quences rendered from BUFF and DynamicFAUST scans.

The complete results of all 9 sequences are provided in the

Figure 5. Comparison to the monocular model-based method [7]

(left to right) input frame, SMPLify, consensus shape. To make a

fair comparison we extended [7] to multiple views as well. Com-

pared to pure model-based methods, our approach captures also

medium level geometry details from a single RGB camera.

supplementary material. To be able to quantitatively evalu-

ate the reconstruction quality, we adjust the pose and scale

of our reconstruction to match the ground truth body scans

following [80, 6]. Then, we compute a bi-directional ver-

tex to surface distance between our reconstruction and the

ground truth geometry. Per-vertex errors (in millimeters)

on all sequences are provided in Tab. 1. The heatmaps of

per-vertex errors are shown in Fig. 6. As can be seen, our

method yields accurate reconstruction on all sequences in-

cluding personalized details. To study the importance of

the pose estimation component, we report the accuracy of

our method using ground truth poses versus using estimated

poses full method. Ground truth poses were obtained by

registering SMPL to the 3D scans. The results of the abla-

tion evaluation are also shown in Fig. 6 and Tab. 1. We can

see that our complete pipeline achieved comparable accu-

racy with the one using ground truth poses which demon-

strates robustness. Results show that there is still room for

improvement in 3D pose reconstruction.

4.2. Qualitative Results on RGB Images

We also evaluate our method on real image sequences.

The People-Snapshot dataset consists of 24 sequences of 11
subjects varying a lot in height and weight. The sequences

are captured with a fixed camera, and we ask the subjects to

rotate while holding an A-pose. To cover a variety of cloth-

ing, lighting conditions and background, the subjects were

captured with varying sets of garments and with three differ-

ent background scenes: in the studio with green screen, out-

door, and indoor with complex dynamic background. Some

examples of our reconstruction results are shown in Fig. 7

and Fig. 1. We show more example in the supplementary

material and in the video. We can see that our method yields

detailed reconstructions of similar quality as the results on

rendered sequences, which demonstrates that our method

generalizes well on the real world scenarios. The benefits

of our method are further evidenced by overlaying the re-

posed final reconstruction on to the input images. As shown

in Fig. 9, our reconstructions precisely overlay the body sil-

houettes in the input images.
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a) b) c) d) e) a) b) c)

Figure 6. Our results on image sequences from BUFF and D-FAUST datasets. Left we show D-FAUST: (a) ground truth 3D scan, (b)

consensus shape with ground truth poses (consensus-p), (c) consensus-p heatmap, (d) consensus shape (consensus), (e) consensus heat-map

(blue means 0mm, red means ≥ 2cm). Right we show textured results on BUFF: (a) ground truth scan, (b) consensus-p (c) consensus.

Subject ID full method GT poses

50002 5.13 ±6.43 3.92 ±4.49

50004 4.36 ±4.67 2.95 ±3.11

50009 3.72 ±3.76 2.56 ±2.50

50020 3.32 ±3.04 2.27 ±2.06

50021 4.45 ±4.05 3.00 ±2.66

50022 5.71 ±5.78 2.96 ±2.97

50025 4.84 ±4.75 2.92 ±2.94

50026 4.56 ±4.83 2.62 ±2.48

50027 3.89 ±3.57 2.55 ±2.33

Subject ID full method GT poses

t-
sh

ir
t,

lo
n
g

p
an

ts 00005 5.07 ±5.74 3.80 ±4.13

00032 4.84 ±5.25 3.37 ±3.59

00096 5.57 ±6.54 4.35 ±4.66

00114 4.22 ±5.12 3.14 ±2.99

03223 4.85 ±4.80 2.87 ±2.58

so
cc

er
o
u
tfi

t 00005 5.35 ±6.67 3.82 ±3.67

00032 7.95 ±8.62 3.04 ±3.39

00114 4.97 ±5.81 3.01 ±2.80

03223 5.49 ±5.71 3.21 ±3.28

Subject ID Subject ID

00009 4.07 ±4.20 02909 3.94 ±4.80

00043 4.30 ±4.39 03122 3.21 ±2.85

00059 3.87 ±3.96 03123 3.68 ±3.22

00114 4.85 ±4.93 03124 3.67 ±3.31

00118 3.79 ±3.80 03126 4.89 ±6.12

Table 1. Numerical evaluation on 3 different datasets with ground truth 3D shapes. On D-FAUST and BUFF we rendered the ground truth

scans on a virtual camera (see text), KinectCap already included images. We report for every subject the average surface to surface distance

(see text). On BUFF, D-FAUST and KinectCap we achieve mean average errors of 5.37mm, 4.44mm, 3.97mm respectively. As expected

best results are obtained using ground truth poses. Perhaps surprisingly, the results (3.40 mm for BUFF, 2.86 for D-FAUST) do not differ

much from the average errors of the full pipeline. This demonstrates that our approach is robust to inaccuracies in 3D pose estimation.

4.3. Comparison with KinectCap

We compare our method to [6] on their collected dataset.

Subjects were captured in both A-pose and T-poses in this

dataset. Since T-poses (zero-pose in SMPL) are rather un-

natural, they are not well captured in our general pose-prior.

Hence, we adjust our pose prior to contain also T-poses.

Note that their method relies on depth data, while ours only

uses the RGB images. Notably, our method obtains compa-

rable results qualitatively and quantitatively despite solving

a much more ill-posed problem. This is further evidenced

by the per-vertex errors in Tab. 1.

4.4. Surface Refinement Using Shading

As mentioned before, our method captures both body

shape and medium level surface geometry. In contrast to

pure model-based methods, we already add significant de-

tails (Fig. 5). Using existing shape from shading methods

the reconstruction can be further improved by adding the

finer level details of the surface, e.g. folding and wrinkles.

Fig. 10 shows an example result of applying the shape from

shading method of [72] to our reconstruction. This appli-

cation further demonstrates the accuracy of our reconstruc-

tion, since such good result cannot be obtained without an

accurate model-to-image alignment.

5. Discussion and Conclusions

We have proposed the first approach to reconstruct a per-

sonalized 3D human body model from a single video of a

moving person. The reconstruction comprises personalized

geometry of hair, body, and clothing, surface texture, and

an underlying model that allows changes in pose and shape.

Our approach combines a parametric human body model

extended by surface displacements for refinement, and a

novel method to morph and fuse the dynamic human sil-

houette cones in a common frame of reference. The fused

cones merge the shape information contained in the video,

allowing us to optimize a detailed model shape. Our al-

gorithm not only captures the geometry and appearance of

the surface, but also automatically rigs the body model with

a kinematic skeleton enabling approximate pose-dependent

surface deformation. Quantitative results demonstrate that

our approach can reconstruct human body shape with an ac-

curacy of 4.5mm and an ablation analysis shows robustness

to noisy 3D pose estimates.

The presented method finds its limits in appearances that

do not share the same topology as the body: long open hair

or skirts can not be modeled as an offset from the body. Fur-

thermore, we can only capture surface details that are seen
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Figure 7. Qualitative results: since the reconstructed templates share the topology with the SMPL body model we can use SMPL to change

the pose and shape of our reconstructions. While SMPL does not model clothing deformations the deformed templates look plausible and

maybe of sufficient quality for several applications.

Figure 8. Comparison to the RGB-D based method of [6] (red) and
ground truth scans (green). Our approach (blue) achieves similar
qualitative results despite using a monocular video sequence as
opposed to a depth camera. Their approach is more accurate nu-
merically 2.54 mm versus 3.97 mm but our results are comparable
despite using a single RGB camera.

Figure 9. Side-by-side comparison of our reconstructions (right)
and the input images (left). As can be seen from the right side,
our reconstructions precisely overlay on the input images. The
reconstructed models rendered in a side view are shown at bottom
right.

Figure 10. Our reconstruction can be further improved by adding
the finer level details of the surface using shape from shading.

on the outline of at least one view. This means especially

concave regions like armpits or inner thighs are sometimes

not well handled. Strong fabric movement caused by fast

skeletal motions will additionally result in decreased level

of detail. In future work, we plan to incorporate illumi-

nation and material estimation alongside with temporally

varying textures in our method to enable realistic rendering

and video augmentation.

For the first time, our method can extract realistic avatars

including hair and clothing from a moving person in a

monocular RGB video. Since cameras are ubiquitous and

low cost, people will be able to digitize themselves and use

the 3D human models for VR applications, entertainment,

biometrics or virtual try-on for online shopping. Further-

more, our method precisely aligns models with the images,

which opens up many possibilities for image editing.
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mers, and L. Van Gool. One-shot video object segmentation.

In IEEE Conf. on Computer Vision and Pattern Recognition,

2017. 4

[10] C. Cagniart, E. Boyer, and S. Ilic. Probabilistic deformable

surface tracking from multiple videos. In K. Daniilidis,

P. Maragos, and N. Paragios, editors, European Conf. on

Computer Vision, volume 6314 of Lecture Notes in Com-

puter Science, pages 326–339, Heraklion, Greece, 2010.

Springer. 2

[11] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In IEEE

Conf. on Computer Vision and Pattern Recognition, 2017. 3,

4

[12] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel.

Free-viewpoint video of human actors. In ACM Transactions

on Graphics, volume 22, pages 569–577. ACM, 2003. 2

[13] X. Chen, Y. Guo, B. Zhou, and Q. Zhao. Deformable model

for estimating clothed and naked human shapes from a single

image. The Visual Computer, 29(11):1187–1196, 2013. 3

[14] G. K. Cheung, S. Baker, and T. Kanade. Shape-from-

silhouette of articulated objects and its use for human body

kinematics estimation and motion capture. In IEEE Conf. on

Computer Vision and Pattern Recognition, volume 1, pages

I–I. IEEE, 2003. 3

[15] G. K. Cheung, S. Baker, and T. Kanade. Visual hull align-

ment and refinement across time: A 3d reconstruction al-

gorithm combining shape-from-silhouette with stereo. In

IEEE Conf. on Computer Vision and Pattern Recognition,

volume 2, pages II–375. IEEE, 2003. 3

[16] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev,

D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. High-

quality streamable free-viewpoint video. ACM Transactions

on Graphics, 34(4):69, 2015. 2
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[25] P. Guan, A. Weiss, A. O. Bălan, and M. J. Black. Estimating

human shape and pose from a single image. In IEEE Inter-

national Conf. on Computer Vision, pages 1381–1388. IEEE,

2009. 3

[26] Y. Guo, X. Chen, B. Zhou, and Q. Zhao. Clothed and naked

human shapes estimation from a single image. Computa-

tional Visual Media, pages 43–50, 2012. 3

[27] N. Hasler, H. Ackermann, B. Rosenhahn, T. Thormahlen,

and H.-P. Seidel. Multilinear pose and body shape estisma-

tion of dressed subjects from image sets. In IEEE Conf.

on Computer Vision and Pattern Recognition, pages 1823–

1830. IEEE, 2010. 1

[28] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P. Sei-

del. A statistical model of human pose and body shape.

In Computer Graphics Forum, volume 28, pages 337–346,

2009. 3

8395



[29] T. Helten, A. Baak, G. Bharaj, M. Muller, H.-P. Seidel, and

C. Theobalt. Personalization and evaluation of a real-time

depth-based full body tracker. In International Conf. on 3D

Vision, pages 279–286, Washington, DC, USA, 2013. 3

[30] C.-H. Huang, B. Allain, J.-S. Franco, N. Navab, S. Ilic, and

E. Boyer. Volumetric 3d tracking by detection. In IEEE

Conf. on Computer Vision and Pattern Recognition, pages

3862–3870, 2016. 2
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