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Abstract

We present a fully convolutional autoencoder for light

fields, which jointly encodes stacks of horizontal and verti-

cal epipolar plane images through a deep network of resid-

ual layers. The complex structure of the light field is thus re-

duced to a comparatively low-dimensional representation,

which can be decoded in a variety of ways. The differ-

ent pathways of upconvolution we currently support are for

disparity estimation and separation of the lightfield into dif-

fuse and specular intrinsic components. The key idea is that

we can jointly perform unsupervised training for the au-

toencoder path of the network, and supervised training for

the other decoders. This way, we find features which are

both tailored to the respective tasks and generalize well to

datasets for which only example light fields are available.

We provide an extensive evaluation on synthetic light field

data, and show that the network yields good results on pre-

viously unseen real world data captured by a Lytro Illum

camera and various gantries.

1. Introduction

Light fields have a complex, heavily redundant structure.

In their two-plane parametrization [24], they are given as a

dense, regularly sampled 2D grid of so-called subaperture

views of a scene. When fixing a single vertical or horizon-

tal line in the image plane and moving through the space

of view points in the same direction, one obtains 2D slices

in this four-dimensional space, which are called epipolar

plane images (EPIs), see Figure 5. For scenes with purely

diffuse reflection, these exhibit patterns of oriented lines of

constant color. Each of these lines corresponds to the pro-

jection of a single 3D point in space, and its slope, called the

disparity, is inversely proportional to the point’s distance to

the observer. Discontinuities in the pattern are caused by

occlusions, as they cause transitions between multiple ori-

entations at the occlusion edge [40], see Figure 2.

The situation also becomes less straightforward when re-

flection or glossy, non-Lambertian surfaces come into play,

center view disparity

diffuse specular

Figure 1. Our network jointly separates an input light field into

diffuse and specular components, and computes a disparity map

for the center view. This figure shows output on a previously un-

seen light field rendered with Blender.

as the EPIs then show superimposed patterns [19]. The ori-

entation of the patterns corresponding to specular reflection

does not correspond to disparity, but the specular flow di-

rection, which depends on the intrinsic surface geometry.

To distinguish between those two cases, one must know

if a point exhibits diffuse or specular reflection. On the

other hand, with known geometry, the specular flow can be

directly estimated and reflection components can be sepa-

rated [34]. In case that both shape and reflectance are un-

known, it is hardly possible to tell which phenomena gave

rise to a particular EPI.

Nevertheless, EPIs from natural light fields exhibit an

overall regular structure, and it seems likely that they form
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Figure 2. The four images to the left show, from left to right, the center view of the input light field, the diffuse component, the specular

component (scaled for better visibility) and the disparity. The EPIs to the right are all taken from the same scan line in the light field,

marked white. From top to bottom, they again show the input, the diffuse component, the specular component and the disparity. Since the

diffuse component and the disparity correspond to the same projections of the same 3D points, they share the same pattern. However, the

specular component behaves differently, as it follows the specular flow [34], which depends on the local surface geometry and view point

change in a complex way. In particular, the orientation of the specular lobe in the EPI is different from that of the diffuse texture.

a comparatively low-dimensional manifold within all of

epipolar plane image space. Furthermore, encoding an EPI

well with only a few parameters is related to the difficult

interrelated tasks, such as disparity estimation or separation

of diffuse and specular components. Intuition suggests that

if you learn how to do compression well, you will be able

to better succeed at the other tasks. The idea of this pa-

per is therefore to learn a low-dimensional representation

of EPIs from arbitrary example light fields, but in a way

that the latent variables can be used jointly to accurately

solve various supervised tasks in light field analysis. For

this, we propose an encoder-decoder neural network based

on the concept of deep auto-encoders [14], which recently

have been highly successful in finding meaningful manifold

representations [28, 15].

Contributions. We introduce the first network archi-

tecture to jointly solve disparity regression and reflectance

separation in light fields. Our fully-convolutional encoder-

decoder network can be trained both unsupervised to just

learn representations, as well as supervised to solve the

above tasks based on the latent space. We employ 3D con-

volutions to compute features integrated over the whole

range of both vertical and horizontal stacks to deal with

complex occlusions and reflections. The network is trained

on datasets rendered with Blender taken from the bench-

mark [16], as well as a custom random light field generator

which in theory can synthesize an arbitrary amount of train-

ing data for reflection separation as well as disparity estima-

tion. Currently we use dataset of 175 light fields, and will

share rendering scripts and network code. We demonstrate

in extensive comparisons that our method quantitatively and

qualitatively outperforms existing light-field methods for

diffuse and specular separation, and can robustly compute

depth for highly specular scenes.

2. Related work

Encoding light fields. From the first introduction of

light fields for image-based rendering [6, 25], light field

compression has been an important topic due to the huge

amount of data which needs to be stored. Early on, it has

been noted that estimating disparity is necessary to exploit

the redundancies in the different viewpoints [26]. This can

be turned around, and sparse coding actually been used as

a tool for disparity estimation - similar in spirit to what we

are proposing here. In [11] they use the idea of redundancy

of sub-aperture views and used sparsity of the RPCA as a

new matching term. Likewise, [29] employ sparsity ideas

to model light field patches as Gaussian random variables

conditioned on its disparity value. They construct a patch

prior and can estimate disparity by finding the nearest PCA

subspace. In [19], EPI patches are encoded with a dictio-

nary of patches with known slope, such that the coding co-

efficients give a disparity estimate. Notably, this method

can recover disparity for multiple layers of a scene. Sparse

coding is also used for compressive light field photogra-

phy [27], which reduces the amount of data to be captured.

Both sparse coding and low-rank constraints are also key to

modern light field compression schemes [3, 18].

However, the idea of an auto-encoder we employ in this

work is in some sense the exact opposite to sparse cod-

ing: instead of finding an overcomplete basis and represent

patches with a sparse vector in a high-dimensional space,

we want to find the best low-dimensional coding directly.

Reflection separation. The dichromatic reflection

model proposed by Shafer [30] decomposes an input scene

into diffuse and specular components. Based on this, [46]

considers specularity removal as an image denoising prob-

lem and solves it with bilateral filtering. In [37, 36], Tan and

Ikeuchi devise a method based on pure chromaticity analy-

sis without any geometrical information. Kim et al. [21]

used the fact that the dark channel can provide an approxi-

mately specular free image. In [1], Akashi and Okatani use

sparse non-negative matrix factorization to jointly estimate

body color and separate reflection components.

What makes reflection separation from a single image

particularly difficult is that specularity is a view dependent

phenomenon, and can hardly be recognized from a single

view point. With multiple views available, changes in ob-
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Figure 3. A single residual block of the network. After batch

normalization, a first path leads through a (possibly strided) con-

volution layer and a leaky ReLU. A second path either keeps the

input, or passes it through a strided convolution in case it needs to

be resampled. Both paths are added together to produce the final

output. The idea is that it is much easier for such blocks to learn

the identiy transformation, or perform only small modifications to

the input [10], which helps the encoder-decoder paths to gradually

add details.

ject appearance can be tracked with respect to the viewing

angle, which significantly simplifies the task of reflection

separation. The behavior of specularity in static scenes with

a moving camera is described by Swaminathan et al. [35].

They show how motion of specularity depends on object ge-

ometry and light source position, and propose a technique

for specularity extraction from an image sequence.

Recent works by Gryaditskaya et al. [8] and Sulc et

al. [34] explore the light field structure to edit appearance of

specularity and estimate diffuse and specular components.

Tao et al. [38] adapt the dichromatic reflection model to

light fields and propose a depth estimation and specular-

ity removal algorithm. Criminisi [4] studies the behavior

of diffuse and specular components in EPIs and proposes

several reflection separation techniques.

Neural networks for light field analysis. Deep neural

networks are employed for all of the above tasks includ-

ing light field analysis. Wang et al. [41] aim at material

classification. They explore different light field representa-

tions that can be used to train a convolutional neural net-

work. Heber and Pock [12, 13] apply an encoder-decoder

architecture on 2D EPIs and later 3D EPI stacks to estimate

depth. Kalantari et al. [20] and Srinivasan et al. [33] intro-

duce view synthesis algorithms, which recover light fields

from a sparse set of images or a single view. In a simi-

lar vein, [9] obtain compressive light field reconstructions

from single coded 2D images using a joint autoencoder and

4D-CNN architecture. Recently, deep networks were also

successfully applied for inverse rendering and intrinsic im-

age problems [23, 31]. In contrast to the above approaches,

our architecture is not limited to a single task, but can be

trained to perform several of these jointly by implementing

different decoder chains.

Figure 4. The pathways of our deep encoder-decoder network are

organized in six groups of three residual blocks each. The first two

blocks in each encoder group keep depth and resolution the same,

the last block reduces resolution (shown on bottom, viewpoint ×

spatial coordinates), while increasing feature depth (shown on top)

by 32. The decoder paths are exact mirrors of this chain. Disparity

is only a 2D decoder, where the view point dimension of the shape

is removed. To not overly clutter the figure, the visualization does

not show that the encoder and 3D decoders actually operate on

two EPI stacks in parallel, the horizontal and vertical one. The

feature output of these is briefly joined on the bottom layer, and

then decoded again into two separate chains.

3. Proposed network architecture

The key idea is to build the network around an auto-

encoder, so it can be trained unsupervised using just raw

light fields. However, we add multiple pathways to de-

code the latent representation, which can be trained jointly

with the autoencoder in a supervised manner, depending on

which data is available in the current training example. Due

to the combination of supervised and unsupervised train-

ing, we can make sure that the latent representation is both

tailored to the desired tasks, such as depth reconstruction

or intrinsic component representation, but can also gener-

alize well to datasets for which no training information is

available for these tasks. When the network is deployed,

all decoder chains can be evaluated using just the light field

data.

Encoder pathway. The input to the network is a pair

of epipolar volumes, one sliced horizontally, the other one

vertically, see Figure 5. Input patches are 48×48 RGB with

a depth of nine views, larger light fields are segmented into

these patches, so that our network can deal with lightfields

of any shape.

The basic ingredient for the encoders and decoders are

residual blocks. To decrease resolution, we employ strided

convolutions instead of max-pooling, so the network is fully

convolutional. See [10, 32] for justifications of this archi-

tecture. The residual blocks have a very simple structure

and allow direct pass-through of the (batch normalized) in-

put, see Figure 3.

In the encoder pathway, 18 residual blocks are chained
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Figure 5. Visualization of horizontal (left) and vertical (right) EPI stacks used as input to our network. To achieve the actual spatial input

resolution of 48 × 48, they need to be cut out from the above epipolar volumes. Note that although both stacks are three dimensional,

they use images along different directions of view points. In effect, those two stacks assemble a crosshair of views around the center view,

which is thus the only view present in both stacks.

together. Every third one reduces the patch resolution via

strided convolution while increasing feature depth, with the

overall goal of gradually reducing dimensionality. The final

output has shape 3×3×3×192, for an overall reduction of

the input to around 8.3% of its original size, see Figure 4.

Horizontal and vertical epipolar volumes are encoded sepa-

rately. As they have the exact same structure, we have them

share the same filter kernels to reduce the number of net-

work parameters. Since pathways like depth reconstruction

require information from both horizontal as well as vertical

epipolar volumes, their feature output at the representation

level is concatenated. This is the final output of the encoder,

and the bottleneck of the network.

Decoder pathways and output. After passing the

bottleneck, the low-dimensional representation is decoded

again by a chain of residual layers. The latent variables en-

ter different decoder pathways. In this paper, we implement

the auto-encoder path to reconstruct the input, two decoders

for the diffuse and specular components, and a separate de-

coder for the disparity map. All decoder pathways use trans-

pose convolutions to exactly revert the encoder on the cor-

responding level. However, the only link between them is

through the latent representation, see Figure 4.

Lightfield, diffuse and specular components are recon-

structed for the 17 = 9 + 9− 1 views in a crosshair around

the center view, see Figure 5. The disparity map is com-

puted for the center view only. We employ the dichromatic

reflection model [30], whose adaptation to lightfields was

discussed in detail in [38]. According to this model, the

specular component is assumed to be independent from the

diffuse one, which justifies the use of two separate decoder

chains. However, they should also sum up to the input light

field. To let the network better cope with this constraint, we

append specular features to the diffuse ones and vice versa,

but only for the input to the final layer. As disparity out-

put is only 2D, we reduce the filter shape by the respective

dimension. When tiling the output back together, we use

overlapping patches and extract only the central 16 × 16
pixels, as data closer to the center is more accurate.

4. Network training

4.1. Training data

As input data for our algorithm we use a variety of pub-

licly available datasets [45, 39, 16, 43] as well as scenes

specifically created for the purpose of reflection separation.

4D light field benchmark [16]. The light field bench-

mark [16] offers 28 light fields rendered with Blender with

ground truth disparity available. Their composition varies

substantially, with many different materials, lighting con-

ditions, and fine structures with complex occlusions. Their

center view resolution is 512×512, but here and for all other

datasets, we use only completely valid patches for training,

in the sense that pixels shifted by their disparity always lie

within all of the views. We use 48 × 48 pixel patches for

training with 16 pixels of overlap, skipping a 16 pixel bor-

der region. In effect, this gives 900 training patches per light

field for a total of around 25,200 from the benchmark.

New light fields rendered with Blender. We generate

data for specular and diffuse separation using the Blender

addon provided with [16]. By randomizing scenes, we can

generate a (theoretically) infinite amount of different light

fields to ensure a large variety of data. We designed mul-

tiple scenes containing up to five objects of different scales

and geometric complexity. Texture, the reflective proper-

ties and the environment map for lighting are chosen at ran-

dom. Additionally, we randomly change the position and

rotation of all objects and rotate the environment map, to

prevent overfiting to certain geometries and lighting condi-

tions. To ensure that the network can also deal with purely

Lambertian materials, a certain percentage of objects have

purely diffuse material. In total we used 36 pre-built scenes,

321 textures and 109 environment maps collected from dif-

ferent public sources. The 3D models we use are selected

from Chocofur1 and The British Museum2. We adapted the

material properties to fit our needs and only used the mesh

data.

Lightfields are rendered with the Cycles engine, and we

1http://www.chocofur.com
2https://sketchfab.com/britishmuseum
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L
2-loss times 100, validation data L

2-loss times 100, training data

Dataset AE diffuse specular disparity AE diffuse specular disparity

Synthetic

Benchmark [16] 0.860 – – 6.114 0.816 – – 5.964

Ours 0.610 1.577 1.511 1.620 0.568 1.456 1.393 1.419

Real-world

Lytro Illum 0.606 – – – 0.574 – – –

Stanford [39] 1.045 – – – 0.919 – – –

HCI [43] 1.230 – – – 1.150 – – –

Average 0.8702 1.577 1.511 3.867 0.8054 1.456 1.393 3.6915

Figure 6. Network losses for different groups of datasets at convergence. The datasets most difficult to fit for the autoencoder are the ones

from gantries, perhaps due to minimally uneven sampling of viewpoints which has not been properly corrected. Depth reconstruction on

our own synthetic dataset is surprisingly easier than for the benchmark datasets, although it has much stronger specularity. However, the

geometry of our objects is also substantially simpler, and the datasets have large regions of easy to fit planes. Overall, disparity MSE on the

benchmark validation is around the current benchmark average, which is 6.29. However, our model is not specifically optimized for depth

reconstruction, and in particular trained for non-Lambertian scenes, on which it can perform much more robustly than competing methods,

see Figure 7.

adapted the addon [16] such that it can output the intrinsic

components. For both diffuse and specular passes, Cycles

outputs the three different components color, direct lighting,

and indirect lighting. Adding the direct and indirect light

and multiplying it by the color yields the desired ground

truth separation. Data is stored in high dynamic range to

circumvent problems with saturated specularities. The size

of these light fields is also 9× 9× 512× 512. The 175 light

fields we use for training contain around 160,000 patches.

Real-world light fields. We have four sources for real

world light fields for which no ground truth data is available.

First, we use light fields captured with the Lytro Illum light

field camera, calibrated and rectified using the light field

toolbox from [5]. The size of the light fields is 9×9×434×
625. We used 11 light fields for training and two for testing,

which results in 10,175 training examples. Second, we have

a dataset built from the Stanford Light Field Archive [39]

with six training data sets which is 6,816 patches, and with

two light fields held back for testing. Third, we captured a

light field using an industrial camera mounted on a gantry

we assembled ourselves. The size of the light field is 9 ×

9× 497× 710 with a disparity range of [−1.5, 1]. The light

field illustrates a non-Lambertian object, illuminated with

approximately white light. Fourth, we use five real world

light fields from the HCI benchmark [43] and we keep one

for testing, which results in 16,016 more training patches.

4.2. Network implementation and training strategy

From the training data, we set aside 5% for a validation

set. Several light fields are also completely held back, and

used only for testing, see above for details. We implement

the network using Tensorflow in Python3, and train on an

Intel Core i9 system with four nVidia Titan Xp, with the en-

coder/decoder chains distributed to different GPUs to sat-

isfy memory requirements for training. All decoders are

trained with an L2-loss. In case a dataset does not pro-

vide ground truth for a certain pathway, that path is dis-

abled during training. The autoencoder path can always be

trained. Weights are initialized using the same strategy as

for residual networks [10]. Stochastic optimization using

the Adam optimizer [22] for twenty epochs of training data

took roughly five days, after which loss for all pathways

remained stable. The final losses over training and valida-

tion set are shown in Figure 6. While there is of course a

slight gap between training and validation, performance on

unseen data is not significantly worse, so overfitting does

not seem to be an issue here.

Reconstruction of a single pathway during evaluation re-

quires roughly 7 seconds on the above system for a light

field with a center view resolution of 512 × 512, including

tiling of the input light field, all transfers from CPU to GPU

and back, and reassembling the output from the patches.

The complete specular/diffuse decomposition with dispar-

ity estimation takes 19 seconds. We verify the quality of re-

flection separation and disparity estimation in detail in the

next section.

5. Results

We compare our reflection separation with two algo-

rithms designed for light fields. The first one by Sulc et

al. [34] performs reflection separation based on specular

flow. The second one is by Alperovich et al. [2] and per-

forms intrinsic light field decomposition. In addition, we

compare to the network proposed by Shi et al. [31], which

uses a deep autoencoder for intrinsic images. However, it

only works for standard 2D images. To compare to the

full decomposition [2], where the authors decompose the

input light field into albedo, shading and specularity, we

compute the diffuse component by multiplying albedo and
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Center View Ground Truth Ours ACC [17] EPI1 [19] EPI2 [42]

MSE ×100: 5.9 23.1 30.0 35.5

MSE ×100: 4.6 13.4 14.7 17.3
Figure 7. We compare our results for disparity on challenging synthetic scenes that feature strong specularities and regions of little texture

against state of the art methods for depth estimation. Epecially in regions where the specularity dominates the texture, the other EPI based

methods fail, while ACC due to its strong regularization can still yield pleasing (albeit oversmoothed) results. With respect to MSE, our

approach outperforms the other methods significantly.

LMSE ×100 GMSE ×100 SSIM ×100

diff. spec. diff. spec. diff. spec.

Ours 0.15 0.11 0.28 0.23 80.08 81.37

Alperovich [2] 0.12 0.45 0.22 1.04 74.98 48.46

Sulc et al. [34] 0.12 0.47 0.24 1.01 75.43 47.25

Shi et al. [31] 0.34 0.15 0.5 0.39 63.02 73.71

Figure 8. Comparison of different error metrics for specular and

diffuse components. Numbers show the average over nine previ-

ously unseen test datasets. See section 5 for a description of the

metrics. Since Shi et al. [31] does not perform decomposition

for the background, we multiply all results and ground truth with

object mask before measuring the errors.

LMSE ×100 GMSE ×100 SSIM ×100 MSE (depth) ×100

diff. spec. diff. spec. diff. spec. scene 1 scene 2

Original 0.25 0.19 0.64 0.62 66.66 72.75 5.9 4.6

48 x 48 0.33 0.33 0.74 0.73 56.67 59.07 192.7 167.9

9 x 24 x 24 0.28 0.35 0.69 0.85 57.72 62.87 55.87 19.31

Figure 9. Ablation study: Quantitative comparison of separation

over nine previously unseen test datasets, and depth estimation for

the two scenes from Figure 7. Note that we compute error for the

whole center view, without object mask.

shading [7].

For quantitative results, we evaluate reflection separation

on synthetic scenes and report the local mean-squared er-

ror (LMSE) [7] which we compute patch-wise. This er-

ror is scale invariant, since the brightness of the patches is

adjusted to the ground truth. In our experiments, we use

rectangular overlapping patches with a size of 20% of the

total image size. To evaluate the errors that might me can-

celed by LMSE, we also compute global mean squared er-

ror (GMSE) that adjusts the brightness value for the whole

image. We also measure the structural similarity index

(SSIM). See Figure 8 for an overview of all numerical re-

sults, and Figures 10 and 11 for a visual comparison. We

also compare performance of disparity map estimation for

specular scenes to different other algorithms in Figure 7.

As an ablation study, we performed two experiments. In the

first case we trained network only for center view without

any disparity information from sub-aperture views, in the

second case we have reduced spatial patch size to 24 × 24.

Both experiments lead to decrease in performance com-

pared to the original network, see Figure 9 for the compar-

isons on the same data sets that are used in Figures 10, 8, 7 .

Finally, results of our method on different datasets that are

commonly used in the light field community [39, 43, 16]

can be found in Figure 12. We refer to the supplementary

material for more results for the real and synthetic scenes,

and videos for diffuse and specular components that show

angular consistency of the decomposition.

6. Conclusion

In this work, we propose a generative encoder-decoder

architecture for patches taken from light field epipolar vol-

umes. Using different decoder paths, we can achieve both

intrinsic decomposition as well as disparity estimation with

a unified network. Thanks to joint training of autoencoder

and the supervised pathways, we can transform the input

light field into a latent representation which is both much

smaller and well adapted to the desired tasks.

Our method outperforms recent light field based meth-

ods [34, 2], and a single image deep network approach for

intrinsic image decomposition [31]. Although we have only
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Ground truth Ours Alperovich et al. [2] Sulc et al. [34] Shi et al. [31]
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Figure 10. Comparison for a synthetic data set with two non-Lambertian objects with almost no texture, which is typically challenging for

reflection separation. Both modeling approaches [2] and [34] fail to separate the specular component from the diffuse one. The CNN-

based approach [31] successfully separates reflection components, but the diffuse one has some artifacts. In addition, the method requires

an object mask, thus its application is limited to objects well separated from the background, which are rarely found in real world scenes.

center view Ours Alperovich et al. [2] Sulc et al. [34] Shi et al. [31]
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center view
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Figure 11. Two light fields captured with the Lytro Illum plenoptic camera. The first scene consist of a highly specular saxophone and an

almost Lambertian koala. Our network successfully detects more specular parts of the saxophone compared to the other methods. While

we mis-detect the koala as a specular object similar to [31], our method is the only one where the diffuse part behind the large specular

spot on saxophone is not blurred. The second scene has two objects with very small saturated specularity, and only our method is the only

one able to separate it. For all other methods, the specularity is still present in the diffuse component. Note that the single image CNN [31]

does not perform decomposition for the background, thus it appears black in the visualization.
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Figure 12. Results on unseen light fields from various sources. We show center views of the light fields with diffuse and specular com-

ponents and estimated disparities. Top: lightfield from the Stanford data set [39], where we have chosen the most challenging case with

respect to reflection separation and disparity estimation. Our network, while being trained on synthetic scenes, is able to generalize to

real world examples with complicated geometry and reflection. Middle: synthetic scene from light field benchmark [16], where we have

selected an object with small specular regions, to evaluate how the network will cope with it. Specularity is successfully from the diffuse

part, while preserving texture. Bottom: an example data set from HCI benchmark [43].

average performance in depth reconstruction on datasets

from the benchmark [16], in contrast to other methods, we

still recover reliable depth in the presence of strong spec-

ularity. We also generalize well to real-world light fields

captured with the Lytro Illum plenoptic camera or a gantry,

although we do not have ground truth training data available

for these. Despite being trained only on soft reflections, ex-

periments with highly specular light fields show that we are

robust against strong non-Lambertian effects. As the struc-

tures in epipolar volumes are both relatively characteristic

and contain more information, we require only relatively

few training examples (around 200 light fields), compared

to single image approaches which use several millions of

images.
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